“Fava-atanã” (Parkia gigantocarpa) sob alagamento: respostas ecofisiológicas, bioquímicas, morfoanatômicas e de crescimento

dc.contributor.advisor-co1Oliveira Neto, Cândido Ferreira de
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0327663489224028pt_BR
dc.contributor.advisor1Santos Filho, Benedito Gomes dos
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6657344512169584pt_BR
dc.contributor.referee1Alves, Gustavo Antônio Ruffeil
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1638279411609759pt_BR
dc.contributor.referee2Costa, Roberto Cezar Lobo da
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8796391465358994pt_BR
dc.contributor.referee3Conceição, Heráclito Eugênio Oliveira da
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9395320849285405pt_BR
dc.creatorAndrade Júnior, Waldemar Viana de
dc.creator.Latteshttp://lattes.cnpq.br/8789919124755368pt_BR
dc.date.accessioned2025-12-12T13:53:05Z
dc.date.available2016-09-28
dc.date.issued2013
dc.description.abstractParkia gigantocarpa is a Neotropical tree that occurs naturally in the woods of solid ground and high floodplain. To characterize the morphological and anatomical responses, growth, physiological and biochemical young plants of P. gigantocarpa were experimentally subjected to two water regimes. Flooding was imposed on the blade approximately 5 cm above the soil surface using vasel with 14 kg of substrate capacity. Non-flooded plants (control) were irrigated daily, close to field capacity. Plant height, stem diameter, number of leaves and leaflets, shoot dry matter (SDM), root dry mass (RDM), total dry matter (TDM), root shoot ratio (R/PA), lenticels hypertrophic, adventitious roots, air gaps, predawn water potential (Ψam), leaf water potential of the xylem (Ψx), stomatal conductance (gs), transpiration (E), hydraulic conductivity (KL), nitrate concentration, nitrate reductase (NR), free ammonia, glutamine synthetase (GS), total soluble amino acids (TSA), total soluble proteins (TSP), starch, proline, glycine betaine (GB), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and sucrose total soluble carbohydrates (TSC) were assessed at 0, 4, 8, 12 and 16 days. Flooding significantly reduced plant height from the 8th day, but stem diameter did not differ between treatments. The largest reduction in the number of leaves and leaflets, SDM, RDM, TDM and R/PA occurred at 16 days in flooded plants. From the 4th day was displayed to hypertrophic lenticels at the stem base of flooded plants. However, the adventitious roots at the stem base were only observed at 16 days in plants under flooding. In this same period, parenchyma cells of the cortex of the root samples of secondary treatment wetland began the process of training schizogenous small air gaps. A significant reduction in Ψx and KL was continued until the 8th day flooded plants. gs and E decreased continuously until the 16 days the plants under flooding. Nitrate concentration, NR, free ammonia, GS, TSA, TSP, starch significantly reduced, especially in the leaves of flooded plants, reaching the highest values at 16 days. GB proline and sharply increased both in leaves and in the roots of the plants saturated with water. ADH activity was higher in root and LDH was more pronounced in the leaves of plants under water saturation. Flooding significantly reduced the sucrose concentration in the leaves, but after 4 days, there was substantial increase of this sugar in the roots of flooded plants. The concentration of TSC increased, especially in wetland plant roots. All plants survived until the end of the experiment. Growth responses, morphological and anatomical, physiological and biochemical presented by young plants of P. gigantocarpa under flooding during sixteen days, suggesting a tolerance to this type of stress.pt_BR
dc.description.resumoParkia gigantocarpa é uma árvore Neotropical que ocorre naturalmente em mata de terra firme e várzea alta. Para caracterizar as respostas morfoanatômicas, de crescimento, fisiológicas e bioquímicas, plantas jovens de P. gigantocarpa foram submetidas experimentalmente a dois regimes hídricos. O alagamento foi imposto em aproximadamente 5 cm de lâmina acima da superfície do solo usando vasos com capacidade de 14 Kg de substrato. Plantas não alagadas (controle) foram irrigadas diariamente, próximo a capacidade de campo. A altura da planta, diâmetro do caule, número de folhas e folíolos, massa seca da parte aérea (MSPA), massa seca da raiz (MSR), massa seca total (MST), razão raiz parte aérea (R/PA), lenticelas hipertróficas, raízes adventícias, lacunas de ar, potencial hídrico de antemanhã (Ψam), potencial hídrico do xilema foliar (Ψx), condutância estomática (gs), transpiração (E), condutividade hidráulica (KL), concentração de nitrato, nitrato redutase (NR), amônio livre, glutamina sintetase (GS), aminoácidos solúveis totais (AST), proteínas solúveis totais (PST), amido, prolina, glicina betaína (GB), álcool desidrogenase (ADH), lactato desidrogenase (LDH), sacarose e carboidratos solúveis totais (CST) foram avaliados a 0, 4, 8, 12 e 16 dias. O alagamento reduziu significativamente a altura da planta a partir do 8o dia, mas o diâmetro do caule não diferiu entre os tratamentos. A maior redução do número de folhas e folíolos, MSPA, MSR e R/PA ocorreu aos 16 dias nas plantas alagadas. A partir do 4o dia foi visualizada às lenticelas hipertróficas na base do caule das plantas alagadas. Entretanto, as raízes adventícias na base do caule só foram observadas aos 16 dias nas plantas sob alagamento. Neste mesmo período, células parenquimáticas do córtex da raiz secundária das amostras do tratamento alagado iniciaram o processo de formação esquizógeno de pequenas lacunas de ar. A redução significativa do Ψx e a KL foi contínua até o 8o dia nas plantas alagadas. gs e E reduziram continuamente até os 16 dias nas plantas sob alagamento. Concentração de nitrato, NR, GS, AST, PST, amido reduziram significativamente, especialmente, nas folhas das plantas alagadas, atingindo os menores valores aos 16 dias. A concentração de amônio livre, prolina e GB aumentaram acentuadamente, tanto nas folhas quanto nas raízes das plantas saturadas de água. A atividade da ADH foi maior, na raiz e de LDH foi mais acentuado nas folhas das plantas sob saturação hídrica. O alagamento reduziu significativamente a concentração de sacarose nas folhas, mas aos 4 dias ocorreu aumento substâncial deste carboidrato nas raízes das plantas alagadas. A concentração de CST aumentou, especialmente, nas raízes das plantas alagadas. Todas as plantas sobreviveram até o final do experimento. As respostas de crescimento, morfoanatômicas, fisiológicas e bioquímicas, apresentadas pelas plantas jovens de P. gigantocarpa, sob alagamento durante dezesseis dias, sugerem uma tolerância a esse tipo de estresse.pt_BR
dc.identifier.citationANDRADE JÚNIOR, Waldemar Viana de. “Fava-atanã” (Parkia gigantocarpa) sob alagamento: respostas ecofisiológicas, bioquímicas, morfoanatômicas e de crescimento. 2013. 115 f. Dissertação (Mestrado) - Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Belém, 2013. Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical.pt_BR
dc.identifier.urihttps://repositorio.museu-goeldi.br/handle/mgoeldi/3049
dc.languageporpt_BR
dc.publisherMuseu Paraense Emilio Goeldipt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentDepartamento 2pt_BR
dc.publisher.initialsMPEGpt_BR
dc.publisher.programPPG2pt_BR
dc.relation.referencesALLÈGRE, A.; SILVESTRE, J.; MORARD, P.; KALLERHOFF, J.; PINELLI, E. Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. Journal of Experimental Botany, v. 55, n. 408, p. 2625–2634, 2004. ALVES, G. A. R.; SANTOS FILHO, B. G. DOS.; LOBATO, A. K. DA SILVA. YUEN TAN, D. K.; OLIVEIRA NETO, C. F. DE.; COSTA, R. C. L. DA.; ÁVILA F. W.; MARQUES, D. JOSÉ.; GALATE, R. DOS SANTOS. Water relations, nitrogen compounds and enzyme activities in leaf and root of young Yellow Lapacho (Tabebuia serratifolia) plants subjected to flooding. Plant Omics Journal, v. 5, n. 3, p. 216-222, 2012. APG II. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, v.141, n. 4, p. 399-436, 2003. ARRUDA, G. M. T.; CALBO, M. E. R. Efeitos da inundação no crescimento, trocas gasosas e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta Botanica Brasílica. [online], v.18, n.2, p. 219-224, 2004. ASHRAF M.; ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biologia Plantarum, v. 49, p. 459-462, 2005. BATISTA, C. U. N.; MEDRI. M. E.; MEDRI, E. B.; PIMENTA, C, J. A. Tolerância à inundação de Cecropia pachystachyaTrec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta botanica Brasilica, v. 22, n. 91-98, p. 2008. BERGONCI, J.I.; BERGAMASCHI, H.; BERLATO, M.A.; SANTOS, A.O. 2000. Potencial da água na folha como um indicador de déficit hídrico em milho. Pesquisa Agropecuária Brasileira, v.35, n. 8, p. 1531-1540. BERTOLDE, F.Z. ALMEIDA, A.-A.F. PIROVANI, GOMES, C.P. F.P. AHNERT, D. BALIGAR, V.C. VALLE, R.R. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica, v.50, n. 3, p. 447-457, 2012. BUTANDA-CERVERA, A.; VÁZQUEZ-YANES, C.; TREJO, L. La polinización quiropterófila: una revision bibliográfica. Biotica, v. 3, n.1, p. 29-35, 1978. BLOM, C.W.P.M.; VOESENEK, L.A.C.J. Flooding: the survival strategies of plants. TREE v. 11, n. 7, p. 290-295, 1996. CAMPOS, U.O. Grande reino da biodiversidade. In: Amazônia Legal – Programa de Prevenção e Controle de queimadas e Incêndios Florestais na Amazônia. Proarco, Prevfogo/Ibama, Diretoria de Florestas/Ibama e MMA, 2002. CARVALHO, P. E. R. Produção de mudas de espécies nativas por semente e a implantação de povoamentos. In: GALVÃO, A. P. M. (Org.). Reflorestamento de imóveis rurais para fins produtivos e ambientais: um guia para ações municipais e regionais. Brasília: EMBRAPA, p. 151-174. 2000. CARVALHO, P. E. R. Espécies Arbóreas Brasileiras. Brasilia. DF: Embrapa Informação Tecnológica; Colombo, PR: Embrapa Florestas, 644P. 2010. CORBACHO, C., SANCHEZ, J.M.; COSTILLO, E. Patterns of structural complexity and human disturbance of riparian vegetation in agricultural landscapes of a Mediterranean area. Agriculture Ecosystems and Environment, v. 95, p. 495-507, 2003. COSTA, A. M.; GOBBI, E. L.; DEMUNER,V. G.; HEBLING, S. A. O efeito da inundação do solo sobre o crescimento inicial de Schizolobium parahyba (Vell.) S.F. Blake, guapuruvu. Natureza On Line, v.4, n.1, p.7-13, 2006. Disponível em: http://www.naturezaonline.com.br. Acesso em: 20 de agosto de 2012. DUARTE, A.P. Contribuição ao conhecimento da germinação de algumas essências florestais. Rodriguésia, Rio de Janeiro, v. 30, n. 56, p. 439-446, 1978. FERREIRA, C. S.; PIEDADE, M. T. F.; PAROLIN, P.; BARBOSA, K. M. Tolerância de Himatanthus sucuuba Wood. (Apocynaceae) ao alagamento na Amazônia Central. Acta botanica Brasilica, v. 19, n. 3, p. 425-429, 2005. FERREIRA, C. S.; PIEDADE, M. T. F.; FRANCO, A. C.; GONÇALVES, J.F.C.; JUNK W. J. Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree, Aquatic Botany v. 90, n. 3, p. 246-252, 2009. FOLZER, H.; DAT. J. F.; CAPELLI, N.; RIEFFEL, D.; BADOT, P-M. Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree Physiology, v. 26, p. 759–766, 2006. GOMES, J.M.; CARVALHO, J.O.P de.; SILVA, M. G. da.; NOBRE, D. N. V.; TAFFAREL, M.; FERREIRA, J. E. R.; SANTOS. R. N. J. Sobrevivência de espécies arbóreas plantadas em clareiras causadas pela colheita de madeira em uma floresta de terra firme no município de Paragominas na Amazônia brasileira. Acta Amazônica, v. 40, n. 1, p. 171 – 178, 2010. GRAFFMANN, K., GROSSE, W., JUNK, J.; PAROLIN, PPressurized gas transport in Amazonian floodplain trees. Environmental and Experimental Botany, v. 62, p. 371-37, 2008. GIMENO, V.; SYVERTSEN, J P.; SIMÓN, S. I.; NIEVES, M.; DÍAZ-LÓPEZ, L.; MARTÍNEZ, V.; GARCÍA-SÁNCHEZ, F.; Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany, v. 78, p. 47–55, 2012. GOMES, J.M.; CARVALHO, J.O.P de.; SILVA, M. G. da.; NOBRE, D. N. V.; TAFFAREL, M.; FERREIRA, J. E. R.; SANTOS. R. N. J. Sobrevivência de espécies arbóreas plantadas em clareiras causadas pela colheita de madeira em uma floresta de terra firme no município de Paragominas na Amazônia brasileira. Acta Amazônica, v. 40, n. 1, p. 171 – 178, 2010. GLIESSMAN, Stephem R. Agroecologia: processos ecológicos em agricultura sustentável. 4 ed. Porto Alegre: Ed. Universidade/UFRGS, 2009. 659p. HENRIQUE, P. C.; ALVES, J. D.; GOULART, P. F. P.; DEUNER, S.; SILVEIRA, N. M.; ZANANDREA, I.; CASTRO, E. M. de. Physiological and anatomical characteristics of Sibipiruna plants under hipoxia. Ciência Rural [online]. v.40, n.1, p. 70-76, 2010. HERRERA, A.; TEZARA, W.; MARIN, O.; RENGIFO, E. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiologia Plantarum, v. 134, p. 41-48, 2008. HOPKINS, H. C. F. Parkia (Leguminosae: Mimosoideae). Flora Neotropica. Monograph, v. 43, p. 74-77, 1986. HORCHANI, F.; ASCHI-SMITI, S. Prolonged root hypoxia effects on enzymes involved in nitrogen assimilation pathway in tomato plants. Plant Signaling & Behavior, v. 5, n.12, p. 1583-1589, 2010. HSU, Y.; TSENG, M.; LIN, C. The fluctuation of carbohydrates and nitrogen compounds in flooded was-apple tres. Botanical Bulletin of Academia Sinica, v. 40, p. 193-198, 1999. IBGE. 2004. Mapa de Biomas do Brasil. <http://www. ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=169&id_pagina=1>. Acesso em 12/10/2012. IGANCI, J.R.V. Parkia in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. <http://floradobrasil.jbrj.gov.br/2011/FB078941>. Acesso em 05/12/ 2012. ISLAM, M. A.; MACDONALD, S. E. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, v. 18, p.35–42, 2004. JALEEL, CA.; MANIVANNAN, P.; SANKAR, B,; KISHOREKUMAR, A.; PANNEERSELVAM, R. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies. v. 330, n. 9, p. 674-83, 2007. JACKSON, M.B. COLMER, T.D. Response and adaptation by plants to flooding stress. Annals of Botany, v.95, n.4, p.501-505, 2005. KOLB, R. M.; MEDRI, M. E.; BIANCHINI, E. PIMENTA, J. A.; GILONI, P. C.; CORREA, G. T. Anatomia ecológica de Sebastiania commersoniana (Baillon) Smith e Downs (Euphorbiaceae) submetida ao alagamento. Revista Brasileira de Botanica, v. 21, n. 3, p. 305-312, 1998. KOGAWARA, S.; YAMANOSHITA, T.; NORISADA, M.; MASUMORI, M.; KOJIMA, K. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis , a moderately flood-tolerant species. Tree Physiology, v. 26, p.1413–1423, 2006. KOZLOWSKI TT Responses of woody plants to flooding. In: KOZLOWSKI TT (Ed) Flooding and Plant Growth. London: Academic Press, p. 129-163, 1984. LENTINI, M.; PEREIRA, D.; CELENTANO, D.; PEREIRA, R. Fatos florestais da Amazônia. Belém: Imazon (Instituto do Homem e Meio Ambiente da Amazônia), 2005. 141p. LIAO, C.T.; LIN, C.H. Physiological adaptation of crop plants to floodingstress. Proceedings of the National Science Council, v.25, p.148-157, 2001. LOPEZ, O. R.; KURSAR, T. A. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? Oecologia, v. 136, p. 193–204, 2003. LOUREIRO, A.A.; SILVA, M.F. Contribuição ao estudo dendrológico de 5 Parkias (Leguminosae) da Amazônia. Acta Amazônica, v.2, n.2, 1972. LOUREIRO, A.A.; SILVA, M.F. da; ALENCAR, J.C. Essências madeireiras da Amazônia. [s.l.]: Conselho Nacional de Desenvolvimento Científico e Tecnológico, 265p. 1977. MARQUES, M. C M., JOLY C. A. Germinação e crescimento de calophyllum brasiliense clusiaceae), uma espécie típica de florestas inundadas. Acta Botanica. Brasilica, v. 14, n. 1, p. 113-120. 2000. MARTINEZ, G. B.; MOURÃO, M.; BRIENZA JUNIOR, S. Respostas Morfofisiológicas de Plantas de açacu (Hura crepitans L.) provenientes de várzeas do rio Amazonas: Efeito da anóxia do solo. Revista Árvore, v.35, n.6, p.1155-1164, 2011. MEDRI, M.E.; BIANCHINI, E.; PIMENTA, J.A.; DELGADO, M.F.; CORREA, G.T. Aspectos morfo-anatômicos e fisiológicos de Peltophorum dubium (Spr.) Taub. submetida ao alagamento e à aplicação de etrel. Revista Brasileira de Botânica, v. 21, n. 3, p. 1-13, 1998. MEDRI, M. E.; FERREIRA, A. C.; KOLB, R. M.; BIANCHINI, E.; PIMENTA, J. A.; DEVANSO-PABLO, V. M.; MEDRI, C. et al. Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Acta Scientiarum. Bioloical Sciences., v. 29, n. 1, p. 15-22, 2007. MEDRI, C.; PIMENTA, J. A.; SOUZA, L. A.; MEDRI, P. S.; SAYHUN S.; BIANCHINI, E.; MEDRI, M. E. O alagamento do solo afeta a sobrevivência, o crescimento e o metabolismo de Aegiphila sellowiana Cham. (Lamiaceae)? Soil flooding affects the survival, growth and metabolism of Aegiphila sellowiana Cham. (Lamiaceae)? Semina: Ciências Biológicas e da Saúde, Londrina, v. 33, n. 1, p. 123-134, 2012. MERCHANT, A.; PEUKE, A. D.; KEITEL, C.; MACFARLANE, C.; WARREN, C. R.; ADAMS, M. A. Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany, v. 61, n. 6, p. 1785–1793, 2010. MIELKE, M.S.; ALMEIDA, A.F.; GOMES, F.B.; AGUILAR, M.A.G.; MANGABEIRA, P.A.O. Leaf gás exchange, chlorophyll fluorecence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany, v. 50, p. 221-231, 2003. MIELKE, M.S.; MATOS, E. M.; COUTO, V. B.; ALMEIDA, A. F. GOMES, F. P.; MANGABEIRA, P. A. O. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta botanica Brasilica, v. 19, n. 4, p. 905-911, 2005. MUNÔZ-CLARES, R. A.; VELASCO-GARCIA. R. Genio y figura de la betaína aldehído Deshidrogenasa. Mensaje Bioquímico, v. 28, p. 203-223, 2004. OLIVEIRA NETO, C.F. Crescimento, alterações ecofisiológicas e bioquímicas em plantas jovens de jatobá (Hymenaea courbaril L) submetidos à deficiência hídrica e ao alagamento. Belém, 2010. 93p. Tese (Doutorado em Ciências Agrárias). Universidade Federal Rural da Amazônia, 2010. OLIVEIRA, A. K. M. DE.; RIBEIRO, J. W. F.; PEREIRA, K. C. L.; RONDON, E. V.; BECKER, T. J. A.; BARBOSA, L. A. Superação de dormência em sementes de Parkia gigantocarpa (FABACEAE – MIMOSIDAE). Ciência Florestal, v. 22, n. 3, p. 533-540, 2012. PAROLIN, P.; WITTMAN, F.; SCHONGART, J.; PIEDADE, M. T. Amazonian várzea forests: adaptive strategies of trees as tools for forest management. Ecología Aplicada, v. 3 n. 1-2, p. 180-184, 2004. PEREIRA, D., SANTOS, D., VE-DOVETO. M., GUIMARÂES J., VERÌSSIMO, A. Fatos florestais da Amazônia. Belém, PA: Imazon, 124p. 2010. PINHEIRO, K.A.O.; CARVALHO, J.O.P.; QUANZ, B.; FRANCEZ, L.M. B.; SCHWARTZ, G. Fitossociologia de uma área de preservação permanente no leste na Amazônia: indicação de espécies para recuperação de áreas alteradas. Revista Floresta, v.37, p. 175-187, 2007. POVH, J. A.; RUBIN FILHO, C. J.; MOURÃO, K. S. M.; DIAS PINTO, D. Respostas morfológicas e anatômicas de plantas jovens de Chorisia speciosa A. St.Hil. (Bombacaceae) sob condições de alagamento. Acta Scientiarum Biological Sciences, v.27, n.3, p.195-202, 2005. SAIRAM, R.K.; KUMUTHA, D.; EZHILMATHI, K.; DEHMUKH, P. S.; SRIVASTAVA. G. C. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, v.52, n. 3, p. 401-412, 2008. SARQUIS, R.S.F.R.da.; SECCO R. S. da. As espécies de Parkia, pseudopiptadenia e Stryphnodendron (―faveiras‖) no campo experimental da Embrapa Amazônia Oriental, moju, Pará. Boletim do Museu Paraense Emílio Goeldi. Série. Ciências Naturais. Belém, v. 1, n. 3, p. 67-86, 2005. SILVA-ORTEGA, C.O.; OCHOA-ALFARO, A.E.; REYES-AGUERO, J.A.; SANTA CRUZ, G.A.; JIMÉNEZ-BREMONT. J.F. Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry, v. 46, p. 82-92, 2008. SOUZA, V. C.; LORENZI, H. Botânica sistemática: guia ilustrado para a identificação das famílias de Angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum, 2008. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2013, 819p. VIDAL, E.; VIANA, V. M.; BATISTA, J. L. F. Crescimento de floresta tropical três anos após colheita de madeira com e sem manejo florestal na Amazônia oriental. Scientia forestalis, n. 61, p. 133-143, 2002. VIEIRA, I.C.G.; GALVÃO, N.; ROSA, N.A. Caracterização morfológica de frutos e germinação de sementes de espécies arbóreas nativas da Amazônia. Boletim do Museu Paraense Emílio Goeldi, v.12, n.2, 1996. ZABALZA, A.; VAN DONGEN, J.T.; FROEHLICH, A.; OLIVER, S.N.; FAIX, B.; GUPTA, K.J.; SCHMÄZLIN, E.; IGAL. M.; ORCARAY, L.; ROYUELA, M.; GEIGENBERGER, P. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiology, v. 149, p.1087-1098, 2009. WITTMANN, F., SCHÖNGART, J., BRITO, J. M., OLIVEIRA WITTMANN, A., PIEDADE, M. T. F., PAROLIN, P. (2010). Manual of trees from Central Amazonian várzea floodplains: taxonomy, ecology and use. Manaus: Editora INPA.ALAM, I.; SHARMIN, S.; A. KIM, K. H.; KIM, Y.G.; LEE, J. J.; BAHK, J. D.; LEE, B. H. Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant Soil, v. 346, p. 45-62, 2011. ARRUDA, G. M. T.; CALBO, M. E. R. Efeitos da inundação no crescimento, trocas gasosas e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta Botanica Brasilica. [online]. v.18, n.2, p. 219-224, 2004. ASHRAF, M. A. Waterlogging stress in plants: A review. African Journal of Agricultural Research, v. 7, n. 13, p. 1976-1981, 2012. ATWELL, B.J.; DREW, M.C.; JACKSON, M.B. The influence of oxygen deficiency on ethylene synthesis, 1-aminocyclopropane-1-carboxylic ac id levels and aerenchyma formation in roots of Zea mays. Physiologia Plantarum, v.12, p. 15-22, 1988. 52 COLMER, T.D.; VOESENEK, L.A.C.J. Flooding tolerance: suites of plants traits in variable environments. Functional Plant Biology, v. 36, p. 665-681. 2009. BAILEY-SERRES J.; VOESENEK L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, v. 59, p. 313–339, 2008. BATISTA, C. U. N.; MEDRI. M. E.; MEDRI, E. B.; PIMENTA, C, J. A. Tolerância à inundação de Cecropia pachystachyaTrec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta botânica Brasilica, v. 22, n. 91-98, p. 2008. BERTOLDE, F.Z.; ALMEIDA, A.-A.F.; PIROVANI, C.P. GOMES, F.P.; AHNERT, D.; BALIGAR, V.C.; VALLE R.R. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica, v. 50, n. 3, p. 447-457, 2012. BOURANIS, D.L.; CHORIANOPOULOU, S.N.; KOLLIAS C.; MANIOU, P.; PROTONOTARIOS, V.E.; SIYIANNIS, V.F.; HAWKESFORD, M.J. Dynamics of aerenchyma distribution in the cortex of sulfate -deprived adventitious roots of maize. Annals of Botany, v. 97, p. 695-704, 2006. BRACHO-NUNEZ, A.; KNOTHE, N. M.; COSTA, W. R.; LIBERATO, M. A. R.; KLEISS, B.; ROTTENBERGER S.; PIEDADE, M. T. F.; KESSELMEIER, J. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short-and long-term inundation of trees from Amazonian floodplains. Springer Plus, v. 1, n. 9, 2012. CALVO-POLANCO, M.; SEÑORANS, J.; ZWIAZEK, J. J. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. Plant Biology, p. 12-99, 2012. COLMER, T.D.; VOESENEK, L.A.C.J. Flooding tolerance: suites of plants traits in variable environments. Functional Plant Biology, v. 36, p. 665-681, 2009. DAVANSO-FABRO, V. M.; MEDRI, M E.; BIANCHINI, E.; PIMENTA, J. A. Tolerância à inundação: Aspectos da anatomia ecológica e do desenvolvimento da Sesbania virgata (CAV.) Pers. (Fabaceae). Brazilian Archives of Biology and Technology, v. 41, p. 475-482, 1998. DAVANSO, V.M.; SOUZA, L.A.; MEDRI, M.E.; PIMENTA, J.A. BIANCHINI, E. Photosynthesis, growth and development of Tabebuia avellanedae Lor. Ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology, v. 45, p. 375-384, 2002. DAVANSO-FABRO, V.M.; MEDRI, M.E.; SOUZA, L.A.; COLLI, S. Tabebuia avellanedae Lor. Ex Griseb. (Bignoniaceae) submitted at the flooding and the ―Ethrel‖ and silver nitrate application. Brazilian Archives of Biology and Technology, v. 46, p. 57-64, 2003. EMBRAPA. SWNTIA (Programa Estatístico). Campinas, Centro Nacional de Pesquisa Tecnológica em Informática para a Agricultura - CNPTIA (Campinas, SP). EVANS, D. E. Tansley review Aerenchyma formation. New Phytologist, v. 161, p. 35- 49, 2003. EZIN, V.; DE LA PENA, R.; AHANCHEDE, A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, v. 22, n. 1, p. 131-142, 2010. GHANBARY, E.; TABARI, M.; GONZÁLEZ, E.; ZARAFSHAR, M. Morphophysiological responses of Alnus subcordata (L.) seedlings to permanent flooding and partial submersion. International Journal of environmental sciences, v. 2, n. 3, 2012. GÉRARD, B.; ALAOUI-SOSSÉ B.; BADOT, PM. Flooding effects on starch partitioning during early growth of two oak species. Trees Struct Funct, v. 23, p. 373- 380, 2009. GERLACH, D. Botanische Mikrotechnik, Eine Einfuhrung. Georg Thieme Verlag, Stuttgart, 1969. GIMENO, V.; SYVERTSEN, J P.; SIMÓN, S. I.; NIEVES, M.; DÍAZ-LÓPEZ, L.; MARTÍNEZ, V.; GARCÍA-SÁNCHEZ, F.; Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany, v. 78, p. 47-55, 2012. GLENZ, C.; CHLAEPFER R.; IORGULESCU, I.; KIENAST, F. Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management, v. 235, p. 1–13, 2006. GRAFFMANN, K.; GROSSE, W.; JUNK, J.; PAROLIN, P. Pressurized gas transport in Amazonian floodplain trees. Environmental and Experimental Botany, v. 62, n. 3, p. 371-37, 2008. GREGÓRIO. T. A.; GOBBO, L. G.; CARDOSO, J. F., DEMUNER, V. G.; HEBLING, S. A. Efeito do alagamento sobre o crescimento inicial de Tabebuia heptaphylla (Vell.) Toledo (Ipê-rosa), Natureza on line, v. 6, n. 2, p. 91-98, 2008. GREENWAY, H.; GIBBS, J. Review: Mechanisms of anoxia tolerance in plants. II. Energy requirements for mainte-nance and energy distribution to essential processes. Functional Plant Biology, v. 30, p. 999-1036, 2003. HENRIQUE, P. C.; ALVES, J. D.; GOULART, P. F. P.; DEUNER, S.; SILVEIRA, N. M.; ZANANDREA, I.; CASTRO, E. M. Physiological and anatomical characteristics of Sibipiruna plants under hipoxia. Ciência Rural, v. 40, n.1, p. 70-76. 2010. HERSCHBACH, C.; MULT, S.; KREUZWIESER. J.; KOPRIVA, S. Influence of anoxia on whole plant sulphur nutrition of flooding-tolerant poplar (Populus tremula x P.alba). Plant, Cell and Environment, v. 28, p. 167-175, 2005. HOPKINS, H. C. F. Parkia (Leguminosae: Mimosoideae). Flora Neotropica. Monograph, v. 43, p. 74-77, 1986. HORCHANI, F.; HAJRI, R.; KHAYATI, H.; ASCHI-SMITI, S. Physiological Responses of Tomato plants to the Combined Effect of Root Hypoxia An Nacl–salinity. Journal of Phytology, v. 2, n.11, p. 36-46, 2010. ISLAM, M. A.; MACDONALD, S. E. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, v. 18, p.35–42, 2004. JOHANSEN, D.A. Plant microtechnique. New York: McGraw-Hill Book, 1940. 523p. KABRICK, J. M.; DEY D. C.; VAN SAMBEEK, J. W.; COGGESHALL, M.V.; JACOBS, D. F. Quantifying flooding effects on hardwood seedling survival and growth for bottomland restoration. New Forests, v. 43, p. 695-710, 2012. KATZ, E.; RIOV, J.; WEISS, D.; GOLDSCHMIDT, E. E. The climacteric-like behaviour of young, mature and wounded citrus leaves. Journal of Experimental Botany, v. 56, n. 415, p. 1359-1367, 2005. KOLB, R.M.; JOLY, C.A. Flooding tolerance of Tabebuia cassinoides: metabolic, morphological and growth responses. Flora, v. 204, p. 528-535, 2009. KOZLOWSKI, T.T. Responses of woody plants to flooding and salinity. Tree Physiology Monograph, v.1 p.1-29, 1997. LENHARD, N. R.; SCALON, S. P. Q.; NOVELINO, J. O. CRESCIMENTO INICIAL DE MUDAS DE PAU FERRO (Caesalpinia ferrea MART. ex Tul. var. leiostachya Benth.) SOB DIFERENTES REGIMES HÍDRICOS. Ciência Agrotécnica, v. 34, n. 4, p. 870-877, 2010. LIAO, C.T.; LIN, C.H. Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council. v.25, p.148-157, 2001. LIN, K-H.; CHAO, P-Y.; YANG, C-M.; CHENG, W-C.; LO, H-F.; CHANG, T-R. The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, v. 47, p. 417-426, 2006. LOPEZ, O. R.; KURSAR, T. A. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? Oecologia, v. 136, p. 193-204, 2003. MARTINEZ, G. B.; MOURÃO, M.; BRIENZA JUNIOR, S. Respostas Morfofisiológicas de Plantas de açacu (Hura crepitans L.) provenientes de várzeas do rio Amazonas: Efeito da anóxia do solo. Revista Árvore, v. 35, n. 6, p. 1155-1164, 2011. MAURENZA, D.; MARENCO, R. A.; PIEDADE. M. T. F. Efeito da inundação de longa duração sob o crescimento de Pouteria glomerata (Sapotaceae), uma arbórea da várzea da Amazônia Central. Acta Amazonica, v. 39, n. 3, p. 519 -526, 2009. MAURENZA, D.; MARENCO, R. A.; PAROLIN, P. PIEDADE. M. T. F. Physiological responses to flooding and light in two tree species native to the Amazonian floodplains. Aquatic Botany, v. 96, p. 7-13, 2012. MEDRI, M. E.; FERREIRA, A. C.; KOLB, R. M.; BIANCHINI, E.; PIMENTA, J. A.; DEVANSO-PABLO, V. M.; MEDRI, C. et al. Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Acta Scientiarum Biological Science, v. 29, n. 1, p. 15-22, 2007. MEDRI, C.; MEDRI, M. E.; RUAS, E. A.; SOUZA, L. A.; MEDRI, P. S.; SAYHUN, S.; BIANCHINI, E.; PIMENTA, J. A. Morfoanatomia de órgãos vegetativos de plantas juvenis de Aegiphila sellowiana Cham. (Lamiaceae) submetidas ao alagamento do substrato. Acta Botanica Brasilica, v. 25, n. 2, p. 445-454, 2011. MEDRI, C.; PIMENTA, J. A.; SOUZA, L. A.; MEDRI, P. S.; SAYHUN S.; BIANCHINI, E.; MEDRI, M. E. O alagamento do solo afeta a sobrevivência, o crescimento e o metabolismo de Aegiphila sellowiana Cham. (Lamiaceae)? Soil flooding affects the survival, growth and metabolism of Aegiphila sellowiana Cham. (Lamiaceae)? Semina: Ciências Biológicas e da Saúde, Londrina, v. 33, n. 1, p. 123-134, 2012. MIELKE, M.S.; ALMEIDA, A.F.; GOMES, F.B.; AGUILAR, M.A.G.; MANGABEIRA, P.A.O. Leaf gás exchange, chlorophyll fluorecence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany, v. 50, p. 221-231, 2003. MIELKE, M.S.; MATOS, E. M.; COUTO, V. B.; ALMEIDA, A. F. GOMES, F. P.; MANGABEIRA, P. A. O. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta botanica Brasilca, v. 19, n. 4, p. 905-911, 2005. OLIVEIRA, V.C.; JOLY, C.A. Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees – Structure and Function, v. 24, p. 185-193, 2010. OLIVEIRA, A. K. M. DE.; RIBEIRO, J. W. F.; PEREIRA, K. C. L.; RONDON, E. V.; BECKER, T. J. A.; BARBOSA, L. A. Superação de dormência em sementes de Parkia gigantocarpa (FABACEAE – MIMOSIDAE). Ciência Florestal, v. 22, n. 3, p. 533-540, 2012. PAROLIN, P. Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains, Environmental and Experimental Botany, v, 48, n, 2, p. 177-186, 2002. PAROLIN, P.; DE SIMONE, O.; HAASE, K.; WALDHOFF, D.; ROTTENBERGER, S.; KUHN, U.; KESSELMEIER, J.; KLEISS, B.; SCHMIDT, W.; PIEDADE, M. T F.; JUNK, W. J. Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review, v. 70, n. 3, p. 357-380, 2004. PAROLIN. P. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany, v. 103, p. 359-376, 2009. PAROLIN, P.; WITTMANN, F. 2010. Struggle in the flood – Tree responses to flooding stress in four tropical floodplain systems. AoB Plants, 2010. Disponível em: <http://aobpla.oxfordjournals.org/content/2010.toc>. Acesso em: 15 dez. 2012. PEZESHKI, S.R. Wetland plant responses to soil flooding. Environmental and Experimental Botany, v. 46, p. 299-312, 2001. PISICCHIO, C. M.; BIANCHINI, E.; PIMENTA, J. A.; SERT, M. A.; DAVANSO-FABRO, V. M.; MEDRI, M. E. Heliocarpus popayanensis Kunth (Malvaceae) tolera a hipoxia do substrato?. Acta Scientiarum. Biological Sciences, v. 32, n. 2, p. 201-209, 2010. POVH, J. A.; RUBIN FILHO, C. J.; MOURÃO, K. S. M.; DIAS PINTO, D. Respostas morfológicas e anatômicas de plantas jovens de Chorisia speciosa A. St.Hil. (Bombacaceae) sob condições de alagamento. Acta Scientiarum Biological Sciences, v. 27, n.3, p.195-202, 2005. RÄTSCH, G.; HAASE, K. Internal root aeration and anatomic prerequisites of three tree species of the Amazoniam inundation forest. Amazoniana, v. 19, n. 185-197, 2007. SAIRAM, R.K.; KUMUTHA, D.; EZHILMATHI, K.; DEHMUKH, P. S.; SRIVASTAVA. G. C. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, v.52, n. 3, p. 401-412, 2008. SHABALA, S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytologist (2010). Disponível em: <http://www.plantstress.com/articles/up_waterlogging_files/waterloging-toxicity.pdf>. Acesso em: 26 dez. 2012. SHIMAMURA, S.; YAMAMOTO, R.; NAKAMURA, T.; SHIMADA, S.; KOMATSU, S. S. hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Annals of Botany, v. 106, p. 277-284, 2010. SLEWINSKI, T.L.; BRAUN, D.M. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science, v. 178, p. 341-349, 2010. STEFFENS, B.; WANG J.; SAUTER M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta, v. 223, p. 604-612, 2006. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2013, 819p. VIDAL, E.; VIANA, V. M.; BATISTA, J. L. F. Crescimento de floresta tropical três anos após colheita de madeira com e sem manejo florestal na Amazônia oriental. Scientia forestalis, n. 61, p. 133-143, 2002. VISSER. Eric J.W. VOESENEK Laurentius A.C.J. Acclimation to soil flooding – sensing and signal-transduction. Plant and Soil, v. 254, p. 197-214, 2004. VISSER, E.; PIERIK, R. Inhibition of root elongation by ethylene in wetland and non-wetland plant species and the impact of longitudinal ventilation. Plant, Cell & Environment, v. 30, p. 31-38, 2007. YIN, C.; PANG, X.; CHEN, K. the effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environmental and Experimental Botany, v. 67, p. 196-203, 2009.ALAM, I.; SHARMIN, S.; A. KIM, K. H.; KIM, Y.G.; LEE, J. J.; BAHK, J. D.; LEE, B. H. Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant Soil, v. 346, p. 45-62, 2011. ALAOUI-SOSSE, B.; GERARD, B.; BINET, Ph.;. TOUSSAINT.;M.L.; BADOT, P.M. Influence of flooding on growth, nitrogen availability in soil, and nitrate reduction of young oak seedlings (Quercus robur L.). Annals of Forest Science, v. 62, n. 593-600, 2005. ALLÈGRE, A.; SILVESTRE, J.; MORARD, P.; KALLERHOFF, J.; PINELLI, E. Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. Journal of Experimental Botany, v. 55, n. 408, p. 2625-2634, 2004. ALVES G. A R. Aspéctos ecofisiológicos, bioquímicos e crescimento de plantas jovens de ipê-amarelo (Tabebuia serratifolia (Vahl) Nicholson) em condições de déficit hídrico e alagamento. Belém, 2010. 77f. Tese (Doutorado em Ciências Agrárias). Universidade Federal Rural da Amazônia, 2010. ALVES, G. A. R.; SANTOS FILHO, B. G. DOS.; LOBATO, A. K. DA SILVA. YUEN TAN, D. K.; OLIVEIRA NETO, C. F. DE.; COSTA, R. C. L. DA.; ÁVILA F. W.; MARQUES, D. JOSÉ.; GALATE, R. DOS SANTOS. Water relations, nitrogen compounds and enzyme activities in leaf and root of young Yellow Lapacho (Tabebuia serratifolia) plants subjected to flooding. Plant Omics Journal, v. 5, n. 3, p. 216-222, 2012. AROCA, R.; PORCEL, ROSA, R.; RUIZ-LOZA, J. M. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, p. 1-15, 2011. ASHRAF, M.; FOOLAD, M. R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, v.59, p.206-216, 2007. ASHRAF, MA.; AHMAD, MSA, ASHRAF, M.; AL-QURAINY, F.; ASHRAF MY. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Science, v. 62, n. 1, p. 25-38, 2011. ASHRAF, M. A. Waterlogging stress in plants: A review. African Journal of Agricultural Research, v. 7, n. 13, p. 1976-1981, 2012. ASLAM, M.; TRAVIS, R.L.; RAINS, D.W. Enhancement of nitrate reductase activity and metabolic nitrate concentration by methionine sulfoximine in barley roots. Plant Science, v. 161, p. 133–142, 2001. AZCON, R.; TOBAR, R.M. 1998. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa. Effect of drought stress. Plant Science, v, 133, p. 1-8. BAILEY-SERRES, J.; CHANG. R. Sensing and signalling in response to oxygen deprivation in plant cells and other organisms. Annals of Botany, v. 96, p. 507-518. 2005. BAILEY-SERRES J.; VOESENEK L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, v. 59, p. 313-339, 2008. BATES, L. S.; WALDREN, R, P.; TEARE, I. D. Rapid determination of free prline for water-stress studies. Short communication. Plant and soil, v. 39, p. 205-207, 1973. BATISTA, C. U. N., MEDRI. M. E.; MEDRI, E. B.; PIMENTA, C, J. A. Tolerância à inundação de Cecropia pachystachyaTrec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta botanica Brasilica, v. 22, p. 91-98, 2008. BERTANI, A.; BRAMBILLA, I.; MENEGUS, F. Effect of anaerobiosis on rice seedlings: growth, metabolic rate and fate of fermentation products. Journal of Experimental Botany, Oxford, v. 31, n.120, p. 325-331, 1980. BERTOLDE, F.Z. ALMEIDA, A.-A.F. PIROVANI, GOMES, C.P. F.P. AHNERT, D. BALIGAR, V.C. VALLE, R.R. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica, v.50, n. 3, p. 447-457, 2012. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v.72, p. 248-254, 1976. BRANDÃO, A, D.; SODEK, L. Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency. Brazilian Society of Plant Physiology, v. 21, n. 1, p. 13-23, 2009. BUCHANAN, B.B., GRUISSEM, W.; JONES, R.L. Biochemistry & Molecular Biology of Plants. 3ed. Maryland: American Society of Plant Physiologists, 2001, 1367p. CALVO-POLANCO, M.; SEÑORANS, J.; ZWIAZEK, J. J. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. Plant Biology, p. 12-99, 2012. CATALDO, D. A.; HAROON, S. L. E; YOUGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commum Soil Science Plant Analyse, v. 6, n. 1, p. 71-80, 1975. CENTRITO, M.; LORETO, F.; CHARTZOULAKIS, K. The use of low [CO2] to estimate dissusional and non-diffusional limitati ons of photosynthetic capacity of salt stressed oline saplings. Plant Cell and Environment, p. 585-594, 2003. CHIEN, HG.; LIN, C. C.; WANG, J-W. CHEN, C.T.; KAO, C. H. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regulation, p. 1-7, 2000. DAT, J. F.; CAPELLI, N.; FOLZER, H.; BOURGEADE, P.; BADOT. P. M. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, v. 42, p. 273-282, 2004. DAVANSO, V. M.; SOUZA, L. A.; MEDRI, M. E.; PIMENTA, J. A.; BIANCHINI, E. Photosynthesis, growth and development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology, v. 45, n. 3, p. 375-384, 2002. DEBOUBA M.; MAÂROUFI-DGHIMI H.; SUZUKI A.; GHORBEL MH.; GOUIA H. Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Annals of Botany, v. 99, n. 6, p. 1143-1151, 2007. DENNIS, E.S.; DOLFERUS, R.; ELLIS, M.; RAHMAN, M.; WU, Y.; HOEREN, F.U.; GROVER, A.; ISMOND, K.P.; GOOD, A.G.; PEACOCK, W.J. Molecular strategies for improving waterlogging tolerance in plants. Journal Experimental Botany, v. 51, n. 342, p.89-97, 2000. DREW M. C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, v. 48, n. 223-250, 1997. DOLFERUS, R., WOLANSKY, M., CARROLL, R., MIYASHITA, Y., ISMOND, K.; GOOD, A. Functional analysis of lactate dehydrogenase during hypoxic stress in Arabidopsis. Functional Plant Biology, v. 35, p.131-140, 2008. DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. A.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analitical Chemistry, v. 28, n. 3, p. 350-356, 1956. EZIN, V.; DE LA PENA, R.; AHANCHEDE, A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, v. 22, n. 1, p. 131-142, 2010. EMBRAPA. SWNTIA (Programa Estatístico). Campinas, Centro Nacional de Pesquisa Tecnológica em Informática para a Agricultura - CNPTIA (Campinas, SP). FERREIRA, C. S.; PIEDADE, M. T. F.; FRANCO, A. C.; GONÇALVES, J.F.C.; JUNK W. J. Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree, Aquatic Botany, v. 90, n. 3, p. 246-252, 2009. FOLZER, H.; DAT, J.; CAPELLI, N.; RIEFFEL, D.; BADOT, PM. Response to flooding of sessile oak: An integrative study. Tree Physiology, v, 26, p. 759-766, 2006. FRANCO, A.C.; LÜTTGE, U. Midday depression in savana trees: coordinated adjustaments in photochemical efficiency, photorespiration, CO2 assimilaion and water use efficiency. Oecologia, Heideberg, v. 201, p. 121-131, 2004. GHANBARY, E.; TABARI, M.; GONZÁLEZ, E.; ZARAFSHAR, M. Morphophysiological responses of Alnus subcordata (L.) seedlings to permanent flooding and partial submersion. International Journal of environmental sciences, v. 2, n. 3, 2012. GIMENO, V.; SYVERTSEN, J P.; SIMÓN, S. I.; NIEVES, M.; DÍAZ-LÓPEZ, L.; MARTÍNEZ, V.; GARCÍA-SÁNCHEZ, F.; Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany, v. 78, p. 47–55, 2012. GONG, Ji-R.; ZHANG, X-S.; HUANG, Y-M.; ZHANG, C-L. The effects of flooding on several hybrid poplar clones in Northern China. Agroforest System, v. 69, n.1, p.77-88, 2007. GRIEVE C.M.; GRATTAN S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, v.70, p. 303-307, 1983. HAGEMAN, R. H. G.; HUCKLESBY, D. P., Nitrate reductase from higher plants. In: Methods in enzimology, New York, Academic Press, v. 17a, p. 491-503, 1971. HENRIQUE, P. C.; ALVES, J. D.; GOULART, P. F. P.; DEUNER, S.; SILVEIRA, N. M.; ZANANDREA, I.; CASTRO, E. M. de. Physiological and anatomical characteristics of Sibipiruna plants under hipoxia. Ciência Rural [online], v.40, n.1, p. 70-76, 2010. HERSCHBACH, C.; MULT, S.; KREUZWIESER. J.; KOPRIVA, S. Influence of anoxia on whole plant sulphur nutrition of flooding-tolerant poplar (Populus tremula x P. alba). Plant, Cell and Environment, v. 28, p. 167-175, 2005. HOFFMAN, N.E.; HANSON, A.D. Purification and properties of hypoxically induced lactate dehydrogenase from barley roots. Plant Physiology, v.82, n.3, p.664-670, 1986. HORCHANI, F.; HAJRI, R.; KHAYATI, H.; ASCHI-SMITI, S. Physiological Responses of Tomato plants to the Combined Effect of Root Hypoxia An Nacl –salinity. Journal of Phytology, v. 2, n.11, p. 36-46, 2010. HORCHANI, F.; ASCHI-SMITI, S. Prolonged root hypoxia effects on enzymes involved in nitrogen assimilation pathway in tomato plants. Plant Signaling & Behavior, v. 5, n.12, p. 1583-1589, 2010. HSU,Y.; TSENG, M.; LIN, C. The fluctuation of carbohydrates and nitrogen compounds in flooded was-apple tres. Botanical Bulletin of Academia Sinica, v. 40, p. 193-198, 1999. IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Disponível em: http://bit.ly/2X3F. Acesso em dezembro, 2012. ISLAM, M. A.; MACDONALD, S. E. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, v. 18, p.35-42, 2004. ISLAM MR.; HAMID A.; KHALIQ QA.; HAQUE MM.; AHMED JU.; KARIM MA. Effects of soil flooding on roots photosynthesis and water relations in mungbean (Vigna radiata (l.) Wilczek). Journal of Botany, v. 39, n. 241-243, 2010. JAEGER, C.; GESSLER, A.; BILLER, S.; RENNENBERG, H.; KREUZWIESER, J. Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging. Journal of Experimental Botany, v. 60, n. 15, p. 4335-4345, 2009. JALEEL, CA.; MANIVANNAN, P.; SANKAR, B,; KISHOREKUMAR, A.; PANNEERSELVAM, R. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies. v. 330, n. 9, p. 674-83, 2007. KABRICK, J. M.; DEY D. C.; VAN SAMBEEK, J. W.; COGGESHALL, M.V.; JACOBS, D. F. Quantifying flooding effects on hardwood seedling survival and growth for bottomland restoration. New Forests, v. 43, p. 695-710, 2012. KAMACHI, K.; YAMAYA, T.; MAE,T.; OJIMA, K. A. Role for glutamine synthetase in remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiology, v. 96, p. 411-417, 1991. KAVI KISHOR, P. B.; SANGAM, S.; AM RUTHA, R. N.; SRI LAXMI, P.; NAIDU, K. R.; RAO, K. R. S. S.; RAO, S.; REDDY, K. J.; THERIAPPAN, P.; SRE ENIVASULU, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, v. 88, n. 3, p. 424-438, 2005. KOGAWARA, S.; YAMANOSHITA, T.; NORISADA, M.; MASUMORI, M.; KOJIMA, K. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis , a moderately flood-tolerant species. Tree Physiology, v. 26, p.1413-1423, 2006. KOZLOWSKI, T.T.; PALLARDY, S.G. Physiology of Woody Plants. Academic Press, San Diego, p. 411, 1997. KOZLOWSKI, T.T. Responses of woody plants to flooding and salinity. Tree Physiology Monograph, v.1 p.1- 29, 1997. KREUZWIESER, J.; PAPADOPOULOU, E.; RENNENBERG, H. Interaction of flooding with carbon metabolism of forest trees. Plant Biology (Stuttg), v. 6, n. 3, p. 299-306, 2004. KREUZWIESER, J.; HAUBERG, J.; HOWELL, K.; RENNENBERG A. C. H.; MILLAR, A. H.; WHELAN, J. Differential Response of Gray Poplar Leaves and Roots Underpins Stress Adaptation during Hypoxia. Plant Physiology, v. 149, P.461-473, 2009. LANDSBERG, J. J. Physiological ecology of forest production. London: Academic Press, 1986, 198p. LARCHER, W. Ecofisiologia vegetal. São Carlos: RIMA Artes e Textos, 2006, 532p. LIAO, C.T.; LIN, C.H. Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, v.25, p.148-157, 2001. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, v.105, p. 1141-1157, 2010. MEDRI, C.; PIMENTA, J. A.; SOUZA, L. A.; MEDRI, P. S.; SAYHUN S.; BIANCHINI, E.; MEDRI, M. E. O alagamento do solo afeta a sobrevivência, o crescimento e o metabolismo de Aegiphila sellowiana Cham. (Lamiaceae)? Soil flooding affects the survival, growth and metabolism of Aegiphila sellowiana Cham. (Lamiaceae)? Semina: Ciências Biológicas e da Saúde, Londrina, v. 33, n. 1, p. 123-134, 2012. MIELKE, M.S.; ALMEIDA, A.F.; GOMES, F.B.; AGUILAR, M.A.G.; MANGABEIRA, P.A.O. Leaf gás exchange, chlorophyll fluorecence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany, v. 50, p. 221-231, 2003. MIELKE, M.S.; MATOS, E. M.; COUTO, V. B.; ALMEIDA, A. F. GOMES, F. P.; MANGABEIRA, P. A. O. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta botanica Brasilca, v. 19, n. 4, p. 905-911, 2005. MUNÔZ-CLARES, R. A.; VELASCO-GARCIA. R. Genio y figura de la betaína aldehído Deshidrogenasa. Mensaje Bioquímico, v. 28, p. 203-223, 2004. NOBRE, C.A.; SAMPAIO, G.; SALAZAR, L. Mudanças climáticas e Amazônia. Ciência e Cultura v. 59, n. 3, p. 22-27, 2007. OKUMOTO, S.; GUILLAUME, P. Amino Acids Export in Plants: A missing link in Nitrogen Cycling. Plant Molecular Biology, v. 4, n. 3, p. 453-463, 2011. OLIVEIRA NETO, C.F. Crescimento, alterações ecofisiológicas e bioquímicas em plantas jovens de jatobá (Hymenaea courbaril L) submetidos à deficiência hídrica e ao alagamento. Belém, 2010. 93p. Tese (Doutorado em Ciências Agrárias). Universidade Federal Rural da Amazônia, 2010. PARENT, C.; CAPELLI N.; BERGER, A.; CRÈVECOEUR, M.; DAT, J. F.; An Overview of Plant Responses to Soil Waterlogging. Plant Stress, v. 2, n. 1, p.20-27, 2008. PEOPLES, M. B.; FAIZAH, A. W.; REAKASEM, B. E.; HERRIDGE, D. F. Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Centre for International Agricultural Research, p. 76, 1989. PIERCE, S. C.; MOORE, M. T.; LARSEN, D.; PEZESHKI, S. R. Macronutrient (N, P, K) and Redoximorphic Metal (Fe, Mn) Allocation in Leersia oryzoides (Rice Cutgrass) Grown Under Different Flood Regimes. Water Air Soil Pollut, v. 207, p. 73-84, 2010. PRYOR, R.J.; DAVISON, N.J.; CLOSE, D.C. 2006. Waterlogging duration; Interspecific comparison of Leptospermum scoparium (Forst et Forst.f.), Acacia melanoxylon (R. Br.), Nothofagus cunninghamii (Hook.) and Eucalyptus abliqua (L’Herit). Austral Ecology, v. 31, n.4, p. 408-416, 2006. RAHMAN, MS.; MIYAKE H.; TAKEOKA, Y. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.), Plant Production Science, v. 5, p. 33-44, 2002. REGGIANI, R.; NEBULONI, M.; MATTANA, M.; BRAMBILLA I. Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids, v. 18, p. 207-217, 2000. REZAEI, MA.; KAVIANI, B.; KHARABIAN, M. A . 'The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting cultivars Pershing and DPX under soil salinity stress', Plant Omics Journal, v. 5, n. 2, p. 87-93, 2012. ROCHA, M.; LICAUSI, F.; ARAÚJO, W.L.; NUNES-NESI, A.; SODEK, L.; FERNIE, A.R.; VAN DONGEN, J.T. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus. Plant Physiology, v. 152, p. 1501-1513, 2010a. 110 ROSA, M.; PRADO, C.; PODAZZA,G.; INTERDONATO, R.; . GONZÁLEZ, J. A.; HILAL.; M.; PRADO, F. E. Soluble sugars—Metabolism, sensing and abiotic stress. Plant Signaling & Behavior, v. 4, n.5, p. 388-393, 2009. SAIRAM, R.K.; KUMUTHA, D.; EZHILMATHI, K.; DEHMUKH, P. S.; SRIVASTAVA. G. C. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, v.52, n. 3, p. 401-412, 2008. SILVA-ORTEGA, C.O.; OCHOA-ALFARO, A.E.; REYES-AGUERO, J.A.; SANTA CRUZ, G.A.; JIMÉNEZ-BREMONT. J.F. Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry, v. 46, p. 82-92, 2008. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2013, 819p. TOUGOU, M.; HASHIGUCHI, A.; YUKAWA, K.; NANJO, Y.; HIRAGA, S.; AKAMURA, T.; NISHIZAWA, K.; KOMATSU, S. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnology, v. 29, p. 301-305, 2012 VAN HANDEL, E. Direct microdetermination of sucrose. Anal Biochemical, v. 22, p. 280-283, 1968. ZABALZA, A.; VAN DONGEN, J.T.; FROEHLICH, A.; OLIVER, S.N.; FAIX, B.; GUPTA, K.J.; SCHMÄZLIN, E.; IGAL. M.; ORCARAY, L.; ROYUELA, M.; GEIGENBERGER, P. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiology, v. 149, p.1087-1098, 2009. WEATHERBURN, M. W. Phenol hipochlorite reaction for determination of ammonia. Analytical Chemistry, v. 39, p. 971-974, 1967.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectParkia gigantocarpapt_BR
dc.subjectÁrvorept_BR
dc.subjectAlagamentopt_BR
dc.subjectFava-atanãpt_BR
dc.subjectEcofisiologiapt_BR
dc.subjectBioquímicapt_BR
dc.subjectMorfoanatômiapt_BR
dc.subjectLenticelas hipertróficaspt_BR
dc.subjectPotencial hídricopt_BR
dc.subjectÁlcool desidrogenasept_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::BOTANICApt_BR
dc.title“Fava-atanã” (Parkia gigantocarpa) sob alagamento: respostas ecofisiológicas, bioquímicas, morfoanatômicas e de crescimentopt_BR
dc.typeDissertaçãopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
RI DISSERTAO WALDEMAR FINAL 10-08-2013 MAIS ATUAL-CPIA.pdf
Tamanho:
2.07 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.82 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções