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Abstract

Peperomia pellucida L. Kunth is a herb well-known for its secondary metabolites (SM) with

biological potential. In this study, the variations in the SM of P. pellucida during association

with rhizobacteria were evaluated. Plants were inoculated with Enterobacter asburiae and

Klebsiella variicola, which were identified by sequencing of the 16S rRNA gene. The data

were evaluated at 7, 21, and 30-day post inoculation (dpi). Plant-bacteria symbiosis

improved plant growth and weight. Total phenolic content and phenylalanine ammonia

lyase enzyme activity had a significant increase mainly at 30 dpi. P. pellucida was mainly

composed of phenylpropanoids (37.30–52.28%) and sesquiterpene hydrocarbons (39.28–

49.42%). The phenylpropanoid derivative 2,4,5-trimethoxy-styrene (ArC2), the sesquiter-

pene hydrocarbon ishwarane, and the phenylpropanoid dillapiole were the major com-

pounds. Principal component analysis (PCA) of the classes and compounds� 2.0%

indicated that plants colonized by E. asburiae had a reduction in the content of sesquiter-

pene hydrocarbons and an increase in phenylpropanoids and derivatives. Plants treated

with this bacterium also had an increase in the content of 2,4,5-trimethoxystyrene at 30 dpi.

Plants inoculated with K. variicola had significant increases only in the content of the classes

monoterpene hydrocarbons and ‘other compounds’ (hydrocarbons, esters, ketones, etc.).

These data suggest that the production of plant secondary metabolites can be modified

depending on the type of rhizobacteria inoculated.

1. Introduction

Piperaceae is a family of angiosperms composed of approximately 3,700 species from which

2,000 species belong to the genus Piper and 1,600 to the group Peperomia. The species
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Peperomia pellucida (L.) Kunth can be found in the Neotropics, Africa, Southeast Asia, and

Oceania [1]. It is well-known for its biological activities such as cytotoxicity (leukemia HL-60,

cervical HeLa, and breast MCF-7) [2], fracture healing [3], analgesic [4], antimicrobial [5] and

anti-inflammatory [6]. In addition, the plant is used in popular medicine to treat inflamma-

tion, hypertension, cough, cardiac arrhythmia, skin bruises, and several other health problems

[1].

Peperomia pellucida essential oil (EO) is mainly characterized by the presence of dillapiole

(20.7–55.3%) [7,8]. Plants from the Brazilian Amazon, for example, are mostly composed of

dillapiole (39.7–55.3%), β-caryophyllene (10.7–14.3%) and carotol (0–8.1%) [7,9]. Its extracts

are dominated by phenylpropanoid pathway derivatives with a wide variety of lignans with dif-

ferent skeletons [1,10]. The biosynthesis of secondary metabolites can be influenced by physio-

logical and environmental factors such as temperature, seasonality [11], type of soil [12],

salinity [13], and symbiosis with microorganisms [14,15].

Plant growth-promoting rhizobacteria (PGPR) flourish in the rhizosphere of plants by

growing inside or around their tissues. These microorganisms are well-known for their poten-

tial to fix atmospheric nitrogen [16], solubilize phosphorus and produce siderophores that

sequester iron [17], including species of the genera Pseudomonas, Bacillus, Enterobacter and

Klebsiella (Section 4). PGPR can act as biofertilizers, increasing the availability and absorption

of important minerals [18], and in the biological control of phytopathogens [19] and produc-

tion of phytohormones [20].

In addition, plant association with bacteria can affect plant secondary metabolism. Specifi-

cally, these microorganisms can alter plant essential oil yield and composition, as well as its

non-volatile compounds [21,22]. Seedlings of Origanum majorana L. inoculated with Pseudo-
monas fluorescens had an increase in essential oil (EO) yield from 0.05% to 0.14% [23]. Leaf

spraying and micro-injection of P. fluorescens and P. aeruginosa in chickpeas (Cicer arietinum)

infected with Sclerotinia sclerotiorum induced phenylalanine ammonia-lyase (PAL) activity

and phenolic compounds [24].

Therefore, this study aimed to evaluate changes in the secondary metabolism of P. pellucida
during association with rhizobacteria. The bacterial strains EM56 and EM09 were isolated

from the rhizosphere of Schizolobium amazonicumHuber ex Ducke (State of Pará, Amazon

region, Brazil) and identified by sequencing of the 16S rRNA gene as Enterobacter asburiae
strain EM56 and Klebsiella variicola strain EM09. These microorganisms were used in this

study because of their potential for nitrogen fixation, phosphate solubilization and plant-

growth promotion [25–28]. Additionally, plant inoculation with PGPR can improve both

plant growth and change plant secondary metabolism depending on the bacterial species

inoculated.

2. Materials and methods

2.1 Plant sample collection and experimental procedure

Peperomia pellucida plants (30–40 days old) were collected at the Universidade Federal do

Pará (UFPA), campus Belém, Pará, Brazil, in the location site 1 (UTM coordinate: 22S

9837030 782873) and 2 (UTM coordinate: 22S 9836945 783313). A collection authorization

was not required since it is an invasive plant which was not collected in a protected area. The

experiment was conducted in a greenhouse located in the Institute of Biological Sciences (ICB)

of UFPA under 70% of shading, in the same coordinate of location 1. Inoculated (PpI) and

control (PpC) plants were named according to the day of collection: PpI-7 and PpC-7; PpI-21

and PpC-21; and PpI-30 and PpC-30. All analyses were performed at 7, 21 and 30 days post

inoculation (dpi). The experiment was conducted according to the following Sections.
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2.2 Bacteria isolation

The bacterial strains EM09 and EM56 were isolated from the rhizosphere of ‘paricá da Amazô-

nia’ (Schizolobium amazonicumHuber ex Ducke) present in forest fragments of the territory

Transamazônica-Xingu, State of Pará, Brazil. Paricá plants (30–40 cm long) were collected

with roots and root soil, stored in plastic bags and maintained on ice. In the laboratory, 10 g of

soil was diluted in 9 mL of sterile 0.85% NaCl solution (Sigma-Aldrich Brasil Ltda, São Paulo,

Brazil), and 1 mL was used in a serial dilution of 10−4. Around 50 μL from the forth dilution

was plated in two Petri dishes containing Luria-Bertani (LB) agar medium (Sigma-Aldrich

Inc., St. Louis, Missouri, USA), using the spread plating method in a vertical laminar flow

hood under sterile conditions [29,30].

Plant roots were washed with tap water to remove soil, cut into small pieces of approximately

2 cm, and immersed in 70% ethyl alcohol for 5 minutes to eliminate the external microbiota. The

material was rinsed 6 times with sterile distilled water, and 10 g macerated with a sterile glass rod

in test tubes containing 9 mL of sterile 0.85% NaCl solution. The material was submitted to a

serial dilution of 10−4 and plated as previously described. Plates were incubated at 28˚C for 24 h

[29,30]. All bacteria isolation experiments were performed in biological triplicates.

2.3 DNA extraction, 16S gene PCR and sequencing

The bacterial strains E. asburiae and K. variicolawere grown in 10 mL of LB liquid medium and

incubated at 28˚C for 24 h. The microbial suspensions were centrifuged at a gravitational force

(Force G) of 6000 g at 4˚C for 10 min to obtain the pellet that was used for DNA extraction by the

DNeasy Blood and Tissue Kit (Qiagen1). The 16S rRNA gene was amplified using the universal

primers 8F (5’AGAGTTTGATCCTGGCTCAG 3’) and 1492R (5’ TACGGYTACCTTGTTACGACTT
3’). PCR was carried out in 50-μL reaction mixtures containing 0.2 mM of DNTP solution, 1.5

mM of MgCl2 solution, 0.2 pmol of each primer, 1 U of Taq DNA polymerase (Invitrogen, Carls-

bad, California, USA) and 50 ng of DNA. Cycling conditions had an initial denaturation step

(95˚C, 5 min) followed by 35 cycles of annealing (95˚C, 1 min), extension (60˚C, 1 min) and dena-

turation (72˚C, 1 min). The process was terminated by a final extension step (72˚C, 7 min) [31].

Sequencing was performed by the Sanger method at ACTGene Análises Moleculares, Rio

Grande do Sul, Brazil, with a 50 cm capillary sequencer and AB 3500 platform. The sequences

were visualized in the program BioEdit and identified through local alignment using the

National Center for Biotechnology Information (NCBI) tool named BLAST. The evolutionary

history of the strains was evaluated using the program MEGA6 [32] by the neighbor-joining

method [33]. The phylogeny test applied was the Bootstrap and the evolutionary distances

were calculated by the p-distance model [34].

2.4 Preparation of bacterial inoculum

The strains E. asburiae and K. variicolawere individually cultivated in 300 mL of LB medium for

4 h at 28˚C. Approximately 1 mL of each microbial culture was regularly collected from the Erlen-

meyer flask in a laminar flow hood and the density measured until the absorbance at 600 nm

(OD600) reached 0.4, which contained around 108 Colony Forming Units (CFU) per mL [35].

The grown medium was centrifuged at 7600 g for 30 min, the supernatant discarded and the pel-

let homogenized with 300 mL of sterile 0.85% NaCl solution containing 0.5% of cellulose [36].

2.5 Plant cultivation and inoculation

Peperomia pellucida cuttings containing 3 or 4 nodes and ½ of a leaf were propagated in sterile

vermiculite type B (Urimamã Mineração Ltda, Santa Maria da Boa Vista, Brazil). Nutrient
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solution (Biofert Root) containing N, P2O5, K2O, S, B, Cl, Cu, Fe, Mn, Mo and Zn was applied

at every 15 days. After 30 days of cultivation, plants were inoculated with 5 mL of the bacterial

inoculum 3 to 5 cm below the soil surface. Control plants (non-inoculated with bacteria)

received only 5 mL of sterile 0.85% NaCl solution with 0.5% cellulose (Section 2.3) [37].

The experiment was performed in vermiculite since plants were supplemented with nutri-

ent solution containing nutrients also important to the microorganisms studied. This strategy

has also been used in other similar studies with herbs since their growth conditions are harder

to be reproduced in a greenhouse [21,38–40].

2.6 Plant development evaluation

The following plant growth parameters were evaluated: number of leaves, number of nodes,

height (cm), root length (cm), leaves and roots fresh biomass (g). Height was measured from

the plant collar to the end of the terminal bud of the main branch. Leaf and node numbers

were counted in the collection site. Plant leaves and roots were collected in aluminum foil,

maintained on ice, weighted and conserved under refrigeration at -20˚C.

2.7 Extraction and analysis of volatile compounds

Leaf volatile compounds were extracted by simultaneous distillation using the Likens-Nicker-

son extractor for 2 h with 3 mL of n-pentane. Aliquots of 1 μL of the resulting organic fraction

were analyzed by GC-MS. The qualitative analysis was carried out on a Shimadzu QP2010 plus

instrument under the following conditions: Rtx 5MS silica capillary column (30 m × 0.25

mm × 0.25 μm); programmed temperature of 60–240˚C (3˚C/min); carrier gas helium with

velocity of 32cm/s; type of injection splitless and ionization by electronic impact (70 eV); injec-

tor temperature of 250˚C; ion source and transfer line temperature of 200˚C. The identifica-

tion of compounds was performed by comparison of mass spectrum and retention index (RI)

with data present in the libraries NIST [41] and Adams [42]. The RIs were calculated using a

homologous series of n-alkanes (C8–C20, Sigma–Aldrich) [43].

2.8 Determination of total phenolic content (TPC)

The extract fractions from fresh leaves (2 g) were obtained by percolation (96 h) with 50 mL of

methanol. After solvent evaporation, the Folin-Ciocalteu method was used to determine total

phenolic content (TPC) [44]. The extracts were solubilized again in methanol at a concentra-

tion of 20 mg/mL and then diluted 30 times in water because of our samples reactivity. This

dilution should be tested for each type of plant sample in order to maintain an absorbance

between 0.3 and 0.7. Aliquots of 500 μL of the diluted sample received 250 μL of Folin-Ciocal-

teu (1 N) and then 1,250 μL of Na2CO3 (75 g/L). After 30 min of incubation in the dark, the

absorbance was read at 760 nm using a UV-Vis spectrophotometer (Ultrospec 5300 pro,

Amersham Biosciences, Little Chalfont, Reino Unido). The experimental calibration curve was

prepared using gallic acid. TPC was expressed as milligrams of gallic acid equivalents (GAE)

per gram of extract (mg/GAE g−1) [44].

2.9 In vitro phenylalanine ammonia-lyase (PAL) activity

Leaves were frozen and then macerated in liquid nitrogen. An amount of 250 mg of macerated

leaves was homogenized in 1 mL of sodium borate buffer solution (0.3 mM, pH 8.8), 1 mM

EDTA, 1 mM DTT and 5% polyvinylpolypyrrolidone. The material was centrifuged at 13,000

g for 20 minutes at 4˚C. An aliquot of 0.5 mL of the supernatant was mixed with 1 mL of 0.3

mM sodium borate buffer at pH 8.8 with 0.03 mM L-phenylalanine and incubated for 15
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minutes at 25˚C. The activity was evaluated in a UV-Visible spectrophotometer at 290 nm by

quantification of (E)-cinnamic acid produced from L-phenylalanine. The blank had only the

sodium borate buffer with L-phenylalanine and water [45]. The molar extinction coefficient of

(E)-cinnamic acid (9630 mol�L−1�cm−1) was applied to determine the enzyme activity [45,46].

2.10 Statistical analysis

The experiment was performed in completely randomized blocks with 20 plants for treatment

with a total of 120 individuals (60 controls and 60 inoculated). All analyses were performed in

triplicate, compared with the control group and expressed as means ± standard deviation.

Analyses of variance of plant developmental parameters, PAL enzyme activity, TPC and major

volatile compounds were conducted by Bonferroni test, Two-way ANOVA, using the software

GraphPad Prism 7.0. Differences at p<0.05 were considered statistically significant.

Volatile compounds were also submitted to a multivariate analysis using as variables the

components with percentages� 2.0% and the total sum of the classes of compounds (mono-

terpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, phenylpropa-

noids and derivatives, and other compounds). The data matrix was standardized by

subtracting the mean from each value and dividing it by the standard deviation. Principal

Component Analysis (PCA) was performed in the Software Minitab (free version 390, Minitab

Inc., State College, PA, USA) [47–49].

3. Results

3.1 Identification of the bacteria by 16S rRNA gene sequencing

The bacteria EM56 and EM09 were isolated from roots and soil of paricá. The 16S rRNA gene

was amplified by PCR and the amplicon sequenced. EM56 and EM09 had a sequence size of

1359 pb and 1393 pb, respectively, which were deposited in the GenBank and assigned with

the accession numbers MT279982 and MT279983. Both DNA sequences were submitted to a

search for homology on the tool BLAST of the NCBI. EM56 showed 99.85% of similarity with

Enterobacter asburiae and isolate EM09 indicated 99.93% of similarity with Klebsiella variicola.

The phylogenetic analysis was performed to show the bacterial species and their relation with

other microorganisms (Fig 1). Both microorganisms are well-known for their potential for

nitrogen fixation, phosphate solubilization and siderophore production [27,50].

Fig 1. Phylogenetic tree of the bacteria Enterobacter asburiae strain EM09 and Klebsiella variicola strain EM56

based on sequencing of the 16S rRNA gene. The analysis contained 9 nucleotide sequences with 1,354 positions in the

final data set. The Escherichia coli sequence was used as an external group. The scale bar represents approximately 5

base substitutions per 1000 nucleotide positions.

https://doi.org/10.1371/journal.pone.0262794.g001
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3.2 Comparative analysis of plant development

Plants inoculated with E. asburiae (Table 1) displayed an increase of 24.82% and 34.48% in the

number of leaves and leaf weight at 21 dpi, respectively. Nonetheless, at 30 dpi there was a

reduction of 13.20% in the number of leaves and an increase of 61.10% in their weight since

they became larger. There was a rise in the number of nodes at 21 and 30 dpi (46.70% and

32.40%). However, no significant change was found for plant height, which indicates that inoc-

ulated plants had shorter internodes. The parameter root length was not affected by bacteria

colonization, but root weight increased by 66.70% at 21 dpi and 85.70% at 30 dpi.

Plants inoculated with K. variicola exhibited an increase of 32.80% and 19.80% in the num-

ber of leaves at 21 and 30 dpi, respectively (Table 2). However, leaf weight was only improved

at 30 dpi (50.0%). Furthermore, the number of nodes increased by 52.80% at 21 dpi and by

75.60% at 30 dpi. Height was improved in all days analyzed (18.30%, 30.30% and 25.0%).

There was also a 33.30% increase in root length and a 200.0% increase in root weight at 21 dpi.

No significant changes were observed at 30 dpi.

3.3 Phenylalanine ammonia-lyase (PAL) activity

Plant inoculation induced a higher production of PAL enzyme in the leaves. Propagules colo-

nized by E. asburiae had an increase in the unit of enzyme/mL of extract of 34.0% and 38.0% at

21 and 30 dpi (23.0–30.80 and 29.0–40.0 μU/mL, respectively) (Fig 2A). Similarly, herbs

treated with K. variicola had a rise of 36.80% (18.35–25.10 μU/mL) and 55.32% (19.25–

29.90 μU/mL) in the enzyme activity at 7 and 30 dpi, respectively (Fig 2B).

3.4 Total phenolic determination

The concentration of total phenolic compounds in leaf extracts was improved by both inocula-

tions. Plants treated with E. asburiae displayed an increase of 11.40% and 30.50% in comparison

to control groups at 21 and 30 dpi (26.40–29.40 and 26.90–35.10 mg EAG/g of extract, respec-

tively) (Fig 3A). Peperomia pellucida colonized by K. variicola had an increase in TPC of 31.20%

at 21 dpi (21.50–28.20 mg) and of 30.0% at 30 dpi (24.0–31.20 mg EAG/g of extract) (Fig 3B).

Table 1. Developmental parameters of Peperomia pellucida after inoculation with Enterobacter asburiae.

dpi Treatment Evaluation parameters ‡

Leaves

(no)

CV value

(%)

Nodes

(no)

CV value

(%)

Height

(cm)

CV value

(%)

Root

(cm)

CV value

(%)

Fresh weight–

leaves (g)

CV value

(%)

Fresh weight–

root (g)

CV value

(%)

07 PpC 24.3±1.8 7.3 17.0±1.2 7.2 20.1±
1.2

5.8 9.8±0.8 8.3 0.6± 0.1 8.6 0.2±0.1 35.5

PpIE 26.3±4.5 17.1 19.7±1.2 6.3 18.3

±1.0

5.6 11.5

±0.8

6.5 1.4± 0.3� 23.3 0.3±0.1 19.5

21 PpC 71.7±4.2 5.8 46.0± 2.2 4.7 36.8

±0.8

2.3 13.3

±1.3

9.8 2.9 ±0.1 2.7 0.9± 0.1 6.1

PpIE 89.5

±0.4�
0.5 67.5

±1.2�
1.8 34.5

±3.4

9.8 14.8

±1.0

6.9 3.9±0.1� 2.7 1.5±0.4� 29.4

30 PpC 75.7

±3.3�
4.4 39.5±2.9 7.2 36.8

±2.5

6.7 14.8

±1.4

9.7 1.8±0.3 17.4 0.7±0.1 20.1

PpIE 65.7± 2.4 3.6 52.3

±2.4�
4.5 36.7

±0.6

1.7 15.2

±2.0

13.3 2.9±0.2� 7.6 1.3±0.2� 13.3

DF values 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

‡mean ± standard deviation (n = 3).

�Statistically different according to Bonferroni-test (p < 0.05). dpi: Days post inoculation. PpC: P. pellucida control. PpIE: P. pellucida inoculated with Enterobacter
asburiae. CV: Coefficient of variation. DF: Degree of freedom. Note: Each variable is followed by its CV value.

https://doi.org/10.1371/journal.pone.0262794.t001
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3.5 Analysis of the volatile compounds

The analysis of the volatile compounds indicated 24 and 53 compounds for plants inoculated

with E. asburiae and K. variicola, respectively (Tables 3 and 4). From 93.3 to 100.0% of the

components were identified with a predominance of phenylpropanoids and derivatives

(37.30–52.28%), followed by sesquiterpene hydrocarbons (39.28–49.42%). The components

with contents above 2% were the phenylpropanoid dillapiole (16.72–24.39%), the phenylpro-

panoid derivative (ArC2) 2,4,5-trimethoxystyrene (18.03–31.35%), and the sesquiterpene

hydrocarbons ishwarane (19.37–27.58%), β-caryophyllene (9.69–12.21%), β-elemene (0.83–

3.54%) and (E,E)-α-farnesene (2.93–6.56%).

The percentage of the four major compounds dillapiole, 2,4,5-trimethoxystyrene, ishwarane

and β-caryophyllene were submitted to an analysis of variance and a significant variation was

observed only for plants inoculated with E. asburiae. This included the compound ishwarane

Table 2. Developmental parameters of Peperomia pellucida after inoculation with Klebsiella variicola.

dpi Treatment Evaluation parameters ‡

Leaves

(no)

CV value

(%)

Nodes

(no)

CV value

(%)

Height

(cm)

CV value

(%)

Root

(cm)

CV value

(%)

Fresh weight–

leaves (g)

CV value

(%)

Fresh weight–

root (g)

CV value

(%)

07 PpC 24.0±1.6 6.8 17.0±1.4 8.3 17.5±1.1 6.2 8.3±0.2 2.8 1.1±0.1 9.5 0.2± 0.03 14.2

PpIK 31.7±0.5 1.5 22.7±1.2 5.5 20.7±1.3� 6.4 10.4

±0.1

0.9 1.9±0.2 8.8 0.4±0.1 19.0

21 PpC 53.7±2.9 5.3 43.0±7.9 18.3 19.8±0.2 1.0 10.2

±1.9

19.0 2.0±0.1 4.4 0.2±0.2 10.4

PpIK 71.3

±5.4�
7.6 65.7

±8.5�
12.9 25.8 ±0.5� 1.8 13.6

±1.6�
11.8 2.8±0.5 19.0 0.6±0.1� 15.5

30 PpC 76.3

±10.6

13.9 39.7±7.3 18.4 26.8±1.3 5.0 11.2

±0.5

4.3 2.8±0.1 2.3 0.6±0.1 18.9

PpIK 91.4

±2.7�
3.0 69.7

±4.0�
5.8 33.5±0.4� 1.2 13.3

±0.5

3.5 4.2±0.8� 17.8 0.8±0.2 23.8

DF values 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

‡mean ± standard deviation (n = 3).

�Statistically different according to Bonferroni-test (p < 0.05). dpi: Days post inoculation. PpC: P. pellucida control. PpIK: P. pellucida inoculated with Klebsiella
variicola. CV: Coefficient of variation. DF: Degree of freedom. Note: Each variable is followed by its CV value.

https://doi.org/10.1371/journal.pone.0262794.t002

Fig 2. Variation in the PAL enzyme activity in plants inoculated (n = 3) with Enterobacter asburiae (A) and Klebsiella
variicola (B). �Statistically different according to Bonferroni test (p< 0.05). dpi: Days post inoculation. PpC: P.

pellucida control. PpIE: P. pellucida inoculated with Enterobacter asburiae. PpIK: P. pellucida inoculated with

Klebsiella variicola.

https://doi.org/10.1371/journal.pone.0262794.g002
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which decreased at 7 (27.51–24.85%) and 30 dpi (27.58–23.11%), and 2,4,5-trimethoxystyrene,

which was increased by 20.0% (26.09–31.35%) at 30 dpi (Fig 4A and 4B).

3.6 Multivariate analysis of the volatile composition of plants inoculated

with Enterobacter asburiae and Klebsiella variicola
PCA (Principal Component Analysis) analyses were performed using as variables the total per-

centages of the majority classes and the constituents identified in the volatile fraction

(content� 2.0%).

PC1 and PC2 of the compound classes accounted for 85.7% of the data variance (Fig 5).

PC1 separated samples inoculated with E. asburiae (negative loadings) from samples treated

with K. variicola (positive loadings). Plants colonized by E. asburiae and the control samples

were divided into four groups named from Groups E-I to IV and displayed similar loadings at

7 and 21 dpi. However, inoculated samples at 30 dpi (E-IV) had the greatest distance from its

respective control group (E-III) with loadings of -0.57 in PC1 and 1.76 in PC2 which are

mainly related to the reduction in the amount of sesquiterpenes hydrocarbons (49.42–42.83%)

and increase in the phenylpropanoids and derivatives concentrations (47.35–52.07%)

(Table 3).

Plants treated with K. variicola at 7 dpi and all control groups of this experiment formed a

single group with negative loadings in PC2 and positive in PC1 (Group K-I). The samples

PpIK-21 and PPIK-30 were individually separated from all the control samples and PPIK-7.

The group PPIK-21 exhibited positive loadings in both PC1 and PC2 (2.84 and 1.63) while

PPIK-30 had positive loading in PC1 and negative in PC2 (3.56 and -0.30), which are related

to the increase in the concentration of monoterpene hydrocarbons (0.10–0.62% and 0.13–

1.26%) and ‘other compounds’ (hydrocarbons, esters, ketones, etc.) (4.74–10.80% and 5.77–

9.46%) in comparison to the controls, respectively. The sample PPIK-30 was also close to the

Group K-I because of their similar content in oxygenated sesquiterpenes (Table 4).

PC1 and PC2 analysis of the volatile compounds (content� 2.0%) comprised 79.3% of the

total variability and separated plants colonized with E. asburiae and K. variicola in PC1 into

positive and negative loadings, respectively (Fig 6).

The experiment carried out with E. asburiae effectively separated inoculated samples from

the control samples. The Group E-I (PpC-7, PpC-21 and PpC-30) had a predominance of the

phenylpropanoid dillapiole (22.45%, 22.33%, and 20.31%) and the sesquiterpene hydrocarbons

Fig 3. Total phenolic compounds of plants inoculated (n = 3) with Enterobacter asburiae (A) and Klebsiella variicola
(B). �Statistically different according to Bonferroni test (p< 0.05). dpi: Days post inoculation. PpC: P. pellucida
control. PpIE: P. pellucida inoculated with Enterobacter asburiae. PpIK: P. pellucida inoculated with Klebsiella
variicola.

https://doi.org/10.1371/journal.pone.0262794.g003
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ishwarane (27.5%, 27.4%, and 27.6%) and β-caryophyllene (11.43%, 11.44%, and 11.70%).

Group E-II, composed by inoculated samples (PpIE-7, PpIE-21 and PpIE-30), was mainly

characterized by an initial increase in the content of the sesquiterpenes hydrocarbon (E,E)-α-

farnesene and decrease at 30 dpi (5.89–5.16%). In addition, the samples had an increase in the

concentration of the phenylpropanoid derivative (ArC2) 2,4,5-trimethoxystyrene mainly at 30

dpi (26.09–31.35%), which corroborate with the results presented in the Section 3.5. These

compounds had positive loadings in PC1 and PC2.

Plants colonized with K. variicola and its respective controls were distributed into two

groups: Group K-I was composed of PpC-7, PpI-7 and PpC-21 and characterized by the pre-

dominance of β-caryophyllene (12.21%, 12.14%, and 11.34%) while Group K-II, consisting of

Table 3. Comparison of volatile compounds produced in leaves of Peperomia pellucida inoculated and non-inoculated with Enterobacter asburiae.

7 dpi 21 dpi 30 dpi

Compounds RI(C) RI(L) PpIE PpC PpIE PpC PpIE PpC

(E)-β-Ocimene 1042 1044a 0.05±0.07 0.45±0.39 0.27±0.19 0.71±0.38 0.24±0.34

4-Methyldecane 1053 1051n 0.24±0.10 0.08±0.11 0.13±0.10 0.15±0.05 0.30±0.03 0.15±0.04

n-Undecane 1103 1100a 0.15±0.21 0.16±0.18 0.13±0.11

Hexyl butanoate 1194 1191a 0.08±0.12�

n-Decanal 1208 1201a 0.65±0.20 0.60±0.10 1.02±0.45 0.53±0.11 1.26±0.21 0.81±0.38

Octyl acetate 1214 1211a 1.07±0.10 1.38±0.29 1.34±0.32 1.00±0.10 1.78±0.44 1.00±0.41

4,6-Dimethyldodecane 1281 1285n 0.14±0.05 0.15±0.02 0.05±0.04 0.05±0.05 0.14±0.02 0.08±0.03

Hexyl hexanoate 1386 1382a 0.06±0.08�

Butanoic acid 1389 1381n 0.08±0.11�

β-Elemene 1395 1389a 2.02±0.20 0.98±0.69 2.62±0.53 0.83±1.14 2.29±0.11 2.08±0.04

β-Caryophyllene 1424 1417a 10.31±0.23 11.43±1.11 10.14±0.77 11.44±1.11 10.37±0.91 11.70±0.88

α-Humulene 1459 1452a 0.31±0.05 0.28±0.04 0.51±0.20 0.53±0.20 0.41±0.02 0.42±0.03

Ishwarane 1469 1465a 24.85±0.72 27.51±0.20 26.06±1.39 27.44±1.21 23.11±0.20 27.58±0.36

Germacrene D 1487 1484a 0.82±0.09 0.67±0.34 0.94±0.20 1.49±0.57 0.79±0.06 1.07±0.05

Aristolochene 1490 1487a 0.08±0.11�

Valencene 1499 1495a 0.40±0.56�

γ-Amorphene 1499 1495a 0.59±0.12 0.26±0.19 0.47±0.38 0.46±0.37 0.70±0.03 0.70±0.01

Pentadecane 1503 1500a 0.05±0.04 0.06±0.05 0.07±0.06 0.10±0.00 0.06±0.04

(E,E)-α-Farnesene 1512 1505a 6.07±0.47 3.10±0.80 6.56±1.53 6.19±2.81 5.16±0.62 5.87±0.02

Myristicin 1525 1517a 1.29±0.22 0.25±0.20 0.43±0.43 0.31±0.44 1.09±0.56 0.90±0.13

RI(C): Retention index calculated; RI(L): Retention index of library; a: Adams; n: NIST. �Compounds with low representativity. ��Identification tentative–See Section

4 for more details. dpi: Days post inoculation. PpC: P. pellucida control (non-inoculated). PpIE: P. pellucida inoculated with Enterobacter asburiae (n = 3).

2,4,5-Trimethoxystyrene�� 1566 1621n 28.44±1.67 29.58±1.27 27.57±2.10 25.21±2.13 31.35±0.98 26.09±0.84

Carotol 1604 1594a 0.36±0.03 0.35±0.15 0.52±0.34 0.73±0.16 0.68±0.06 0.87±0.03

Dillapiole 1629 1620a 22.01±1.23 22.45±0.14 19.87±1.11 18.96±0.98 19.57±1.19 20.31±0.27

Apiole 1685 1677a 0.12±0.12 0.10±0.07 0.06±0.05 0.05±0.07

Monoterpene hydrocarbons 0.05±0.00 0.45±0.00 0.27±0.00 0.71±0.00 0.24±0.00

Sesquiterpene hydrocarbons 44.97±8.25 44.23±9.40 47.78±8.03 48.38±9.19 42.83±7.68 49.42±9.17

Oxygenated sesquiterpenes 0.36±0.00 0.35±0.00 0.52±0.00 0.73±0.00 0.68±0.00 0.87±0.00

Phenylpropanoids and derivatives 51.74±11.58 52.28±12.49 47.99±12.03 44.58±11.16 52.07±13.13 47.35±11.55

Others 2.10±0.37 2.41±0.47 2.60±0.55 2.18±0.30 3.71±0.66 2.10±0.40

Total (%) 99.22 99.27 99.34 96.14 100.00 99.98

RI(C): Retention index calculated; RI(L): Retention index of library; a: Adams; n: NIST. �Compounds with low representativeness. ��Identification tentative–See

Section 4 for more details. dpi: Days post inoculation. PpC: P. pellucida control (non-inoculated). PpIE: P. pellucida inoculated with Enterobacter asburiae (n = 3).

https://doi.org/10.1371/journal.pone.0262794.t003
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Table 4. Comparison of volatile compounds produced in leaves of Peperomia pellucida inoculated and non-inoculated with Klebsiella variicola.

7 dpi 21 dpi 30 dpi

Compounds RI(C) RI(L) PpIK PpC PpIK PpC PpIK PpC

n-Octane 814 800a 0.29±0.20 0.39±0.13 2.53±2.80 0.36±0.27 2.56±1.27 0.86±0.40

(2E)-Hexenal 841 846a 0.14±0.10 0.18±0.21 0.07±0.06

2-Methyloctane 854 852n 0.29±0.30 0.23±0.19 0.10±0.06

n-Nonane 897 900a 0.07±0.10 1.12±1.58 1.45±0.65 0.51±0.42

Nonene 928 924n 0.20±0.29�

Tetrahydrocitronellene 935 930 a 0.06±0.09 0.39±0.15 0.08±0.06

4-Methylnonane 949 951n 0.05±0.07�

Mesitylene 993 994a 0.10±0.14� 0.12±0.06�

n-Decane 998 1000a 0.30±0.43 0.42±0.14 0.14±0.11

Acetophenone 1021 1029n 0.28±0.23�

(E)-β-Ocimene 1046 1044a 0.12±0.09 0.24±0.34 0.56±0.33 0.10±0.02 0.88±0.45 0.05±0.04

4-Methyldecane 1055 1051n 0.75±0.07 0.66±0.18 0.89±0.47 0.74±0.11 0.13±0.03 0.41±0.27

2-Methyldecane 1061 1051n 0.16±0.01 0.15±0.03 0.06±0.08 0.18±0.03 0.09±0.07

n-Octanol 1067 1063a 0.17±0.05 0.23±0.28 0.25±0.04 0.16±0.11

n-Undecane 1102 1100a 0.67±0.01 0.71±0.12 0.75±0.24 0.70±0.12 0.40±0.06 0.50±0.31

Naphthalene 1182 1178a 0.34±0.06 0.32±0.11 0.37±0.28 0.40±0.06 0.20±0.16

Hexyl butanoate 1191 1191a 0.07±0.05� 0.06±0.04�

n-Decanal 1205 1201a 0.84±0.08 1.25±0.11 1.14±0.56 0.44±0.13 1.24±0.21 0.66±0.18

Caprylyl acetate 1210 1214n 0.82±1.16 0.70±0.99 0.56±0.46

Octyl acetate 1211 1211a 1.17±0.16 1.39±0.16 0.68±0.48 0.74±0.22 0.92±0.65 0.37±0.30

Isoamyl hexanoate 1252 1246a 0.11±0.10�

RI(C): Retention index calculated; RI(L): Retention index of library; a: Adams; n: NIST. �Compounds with low representativeness. ��Identification tentative–See

Section 4 for more details. dpi: Days post inoculation. PpC: P. pellucida control (non-inoculated). PpIK: P. pellucida inoculated with Klebsiella variicola (n = 3).

4,6-Dimethyldodecane 1280 1285n 0.44±0.07 0.39±0.13 0.44±0.33 0.48±0.07 0.24±0.24

Tridecane 1302 1300a 0.05±0.07�

2,6,11-Trimethyldodecane 1326 1320n 0.16±0.03 0.13±0.05 0.16±0.12 0.17±0.03 0.09±0.07

Eugenol 1366 1357f 0.06±0.08 0.07±0.01 0.05±0.04

β-Bourbonene 1387 1387a 0.12±0.08 0.05±0.08 0.07±0.06

Butanoic acid 1389 1381a 0.10±0.07 0.17±0.00 0.15±0.04 0.21±0.06

1-Tetradecene 1392 1388a 0.05±0.04�

β-Elemene 1394 1389a 2.68±0.36 2.88±0.32 3.06±0.07 2.98±0.11 3.49±0.44 3.54±0.46

Dodecanal 1408 1408a 0.06±0.00� 0.05±0.04� 0.13±0.06 0.09±0.07

Decyl acetate 1410 1407a 0.05±0.04 0.09±0.01 0.09±0.04 0.10±0.04 0.11±0.09

β-Caryophyllene 1422 1417a 12.14±0.15 12.21±0.83 9.69±0.55 11.34±0.55 11.05±0.52 10.86±0.40

β-Copaene 1432 1430a 0.10±0.07� 0.07±0.06�

Spirolepechinene 1446 1449a 0.08±0.06 0.06±0.08 0.11±0.02 0.07±0.05 0.25±0.06 0.17±0.08

α-Humulene 1456 1452a 0.84±0.14 0.96±0.13 0.84±0.02 0.89±0.04 1.15±0.16 1.09±0.17

Ishwarane 1466 1465a 23.77±1.24 23.65±0.88 19.37±2.77 26.14±0.46 20.79±1.98 21.73±3.60

β-Chamigrene 1471 1476a 0.11±0.08� 0.08±0.06�

Germacrene D 1484 1484a 1.13±0.24 1.18±0.27 1.20±0.14 1.24±0.09 1.56±0.36 1.52±0.22

Aristolochene 1487 1487a 0.40±0.15 0.46±0.10 0.41±0.03 0.48±0.04 0.64±0.05 0.57±0.07

γ-Amorphene 1495 1495a 0.40±0.56�

Valencene 1496 1496a 1.12±0.79 1.63±0.14 1.51±0.22 1.76±0.01 1.86±0.10 1.82±0.05

Pentadecane 1499 1499a 0.30±0.04 0.31±0.03 0.25±0.03 0.40±0.06 0.32±0.09 0.35±0.04

(E,E)-α-Farnesene 1509 1505a 2.93±0.45 3.44±0.96 3.10±1.08 3.26±0.11 4.12±0.67 3.97±0.59

(Continued)
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PpI-21, PpC-30 and PpI-30, stood out mainly for the similar concentration of β-elemene

(3.06%, 3.54%, and 3.49%). These groups’ formation indicates that there was no significant dif-

ference in the contents of the components of plants inoculated with K. variicola.

4. Discussion

The genera Enterobacter and Klebsiella are well-known for their potential for plant growth

promotion and biocontrol of agricultural diseases [51–57]. E. asburiae was reported to

improve maize [58], peppers, lettuces, cucumbers and tomatoes development [26] while K.

variicola is well-known for promoting soybean [59], maize [60] and wheat growth [61]. Both

Table 4. (Continued)

Myristicin 1522 1517a 1.35±0.37 1.58±0.33 1.30±0.21 1.08±0.30 1.00±0.22 1.14±0.04

RI(C): Retention index calculated; RI(L): Retention index of; a: Adams; n: NIST. �Compounds with low representativeness. ��Identification tentative–See Section 4 for

more details. dpi: Days post inoculation. PpC: P. pellucida control (non-inoculated). PpIK: P. pellucida inoculated with Klebsiella variicola (n = 3).

β-Sesquiphellandrene 1525 1521a 0.06±0.04� 0.05±0.04�

2,4,5-Trimethoxystyrene�� 1566 1621n 20.19±0.36 18.03±2.37 19.70±3.24 20.00±1.39 18.85±1.47 19.96±0.04

Hexanoic acid 1583 1580n 0.10±0.09� 0.07±0.06�

Caryophyllene oxide 1586 1582a 0.25±0.10 0.37±0.12 0.17±0.03 0.21±0.06 0.29±0.13 0.29±0.06

Carotol 1600 1594a 1.20±0.03 1.26±0.38 1.36±0.04 1.07±0.19 1.63±0.40 1.65±0.47

Dillapiol 1626 1620a 22.69±2.99 22.72±3.21 19.34±1.65 20.97±0.71 16.59±1.80 21.04±0.05

14-Hydroxy-9-epi-(E)-caryophyllene 1672 1668a 0.06±0.05 0.12±0.03 0.24±0.11 0.22±0.16

Apiole 1683 1677a 0.48±0.18 0.57±0.20 0.60±0.22 0.62±0.12 0.86±0.38 1.04±0.34

Monoterpene hydrocarbons 0.12±0.00 0.24±0.00 0.62±0.25 0.10±0.00 1.26±0.25 0.13±0.01

Sesquiterpene hydrocarbons 45.60±6.48 46.51±6.58 39.28±5.43 48.22±7.12 45.18±5.49 45.46±5.69

Oxygenated sesquiterpenes 1.44±0.48 1.69±0.51 1.64±0.57 1.28±0.43 2.16±0.64 2.16±0.66

Phenylpropanoids and derivatives 44.71±10.30 42.95±9.75 41.00±9.25 42.68±9.82 37.30±8.44 43.21±9.69

Others 5.39±0.32 6.44±0.39 10.80±0.56 4.74±0.21 9.46±0.63 5.77±0.22

Total (%) 97.26 97.84 93.35 97.02 95.36 96.68

RI(C): Retention index calculated; RI(L): Retention index of library; a: Adams; n: NIST. �Compounds with low representativeness. ��Identification tentative–See

Section 4 for more details. dpi: Days post inoculation. PpC: P. pellucida control (non-inoculated). PpIK: P. pellucida inoculated with Klebsiella variicola (n = 3).

https://doi.org/10.1371/journal.pone.0262794.t004

Fig 4. Variation in of percentage of ishwarane (A) and 2,4,5-trimethoxystyrene (B) in plants inoculated with

Enterobacter asburiae according to Bonferroni test (p< 0.05), (n = 3). PpC: P. pellucida control. PpIE: P. pellucida
inoculated with Enterobacter asburiae.

https://doi.org/10.1371/journal.pone.0262794.g004
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E. asburiae and K. variicola indicated potential to increase sugarcane growth [25,28]. E. asbur-
iae strain EM56 and K. variicola strain EM09 were both isolated from S. amazonicum rhizo-

sphere and used to inoculate P. pellucida because PGPR can be applied in all groups of plants.

However, these microorganisms may have different effects on plant development and second-

ary metabolism.

Fig 5. The bidimensional plot of the two components (PC1 and PC2) obtained in the PCA analysis of the classes

of compound of controls and plants inoculated with Enterobacter asburiae and Klebsiella variicola.

https://doi.org/10.1371/journal.pone.0262794.g005

Fig 6. The bidimensional plot of the two components (PC1 and PC2) obtained in the PCA analysis of the

compounds of controls and plants inoculated with Enterobacter asburiae and Klebsiella variicola.

https://doi.org/10.1371/journal.pone.0262794.g006
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Bacteria inoculation caused significant variations in P. pellucida developmental parameters.

Specimens colonized by E. asburiae had the number of leaves reduced at 30 dpi while leaf

weight was increased at 21 and 30 dpi. K. variicola caused a rise in the number of leaves at 21

and 30 dpi and improved leaf weight at 30 dpi. Tomato seedlings (Solanum lycopersicum L.)

treated with different Streptomyces spp. (Stm) strains had no changes in the number of leaves

but displayed a rise in leaf weight at 30 dpi [62]. Likewise, the inoculation of Bacillus subtilis in

Ocimum basilicum increased leaf fresh weight at 30 dpi [14].

Furthermore, E. asburiae inoculation increased the number of nodes at 21 and 30 dpi but

had no significant effect on height. Plant symbiosis with K. variicola enhanced the number of

nodes at 21 and 30 dpi and plant height in all days analyzed. Similarly, marjoram seedlings

(Origanum majorana L.) treated with Pseudomonas fluorescens and Bradyrhizobium sp. exhib-

ited an improvement of 33.80% and 23.20% in the number of nodes, respectively [23]. The

association of B. subtilis with O. basilicum also improved plant height by 16 mm at 14 dpi [14].

Plants colonized by E. asburiae had root weight increased at 21 and 30 dpi, but root length was

not affected. The second inoculation caused a growth in root length and weight at 21 dpi, but

no significant changes were found at 30 dpi. Vigna radiata (L.) R.Wilczek colonized by P. aeru-
ginosa and B. subtilis showed a growth of 84.6% and 61.9% on root length and 369.1% and

239.8% on its fresh weight at 35 dpi, respectively [63]. Hydroponic beans (Vigna radiata) asso-

ciated with Enterobacter sp. P36 exhibited a raise of 64.20% in root weight [64].

These rhizobacteria potentials to improve plant growth can be explained by the presence of

several genes with plant-beneficial functions. The genome of K. variicola was reported to con-

tain nif cluster, indole-3-pyruvate decarboxylase (ipdC), siderophore enterobactin synthesis

genes (entABCDEF) and enterobactin exporter gene (entS), and pyrroloquinoline quinone

synthesis genes (pqqBCDEF), which are responsible for its N2 fixation, indole-3-acetic acid

(IAA) production, siderophore production, and phosphate solubilization properties [27]. E.

asburiae was also found to have genes involved in N2 fixation, auxin synthesis (iaa and ipdC),

phosphorus metabolism and siderophore biosynthesis. All these genes together promote

plant-bacteria communication and symbiosis [50,65].

The enzyme PAL plays an important role in inducing plant defense responses [66,67] since

it is the first enzyme in the phenylpropanoid metabolic pathway which converts the amino

acid phenylalanine into (E)-cinnamic acid [67,68]. Since it is involved in the regulation of this

metabolic pathway, PAL can cause accumulation of lignins and phytoalexins that induce dis-

ease resistance [69]. The inoculation of P. pellucida with E. asburiae and K. variicola increased

enzymatic activity mainly at 30 dpi (Fig 2). Similarly, Mentha piperita inoculated and co-inoc-

ulated with different rhizobacteria species showed a growth of approximately 300% in the

enzyme activity [39].

Phenolic compounds are secondary metabolites produced by the shikimate pathway and

pentose phosphate pathway through the metabolization of phenylpropanoids [70–72]. They

are well known for their antioxidant, antibacterial, antifungal, and UV protection activities.

They can also act as defense agents in plants [72,73]. Inoculated propagules showed a growth

in TPC at 21 and 30 dpi (Fig 3). Likewise, specimens of chickpea (Cicer arietinum L.) inocu-

lated and co-inoculated with P. fluorescens and P. aeruginosa displayed an increase in phenolic

content in various growth stages [74]. These compounds have the potential to induce seed ger-

mination and improve plant development [75–79]. They can also contribute to plant defense

against phytopathogens and can act as signaling molecules for symbiont recognition [39,80–

82]. The increase in PAL activity and TPC may be related to both of their roles in inducing

plant defense responses since colonization by symbiotic microorganisms may be initially rec-

ognized as a pathogen infection, causing a biotic stress [66,83].
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The occurrence of dillapiole, 2,4,5-trimethoxystyrene, and β-caryophyllene as the major

compounds of P. pellucida has been previously reported. For instance, EOs of plants collected

in the northern region of Brazil had dillapiole (39.70–55.30%) and β-caryophyllene (10.70–

14.3%) as some of their main components [1,7,9]. The compound 2,4,5-trimethoxystyrene was

reported for P. pellucida collected in the Philippines [84], Belém [85] and São Paulo, in Brazil

[86]. In this study, 2,4,5-trimethoxystyrene retention index (RI) of library (1621, NIST) was

much higher than the RI calculated (1566), which probably happened because the library value

was defined using a DB-1 capillary column. However, the RI values 1565 [87], 1551 [88] and

1552 [89] have also been reported for this compound. The indices found in these studies are

much closer to our calculated RI, which explains this tentative compound identification

(Tables 3 and 4).

The analysis of variance of the major compounds showed significant changes only for

plants colonized by E. asburiae which had a decrease in the concentration of ishwarane

and an increase in 2,4,5-trimethoxystyrene (Fig 4). The growth in the phenylpropanoid

derivative content was an unexpected finding since monoterpene and sesquiterpene con-

tents are usually the ones affected by microorganism inoculation [21,38,90]. The increase

in this compound content may not have been reported for plant-microbe symbiosis, but

2,4,5-trimethoxystyrene could be involved in plant-defense since it has insecticidal activ-

ity [91].

The compound classes and the components with percentages� 2.0% were submitted to

multivariate analysis (Figs 5 and 6). Plants inoculated with E. asburiae were mainly character-

ized by the decrease and increase of sesquiterpene hydrocarbons and phenylpropanoids and

derivatives at 30 dpi, respectively (Fig 5 and Table 3). The compound 2,4,5-trimethoxystyrene

had positive loadings in both components (PC1 and PC2) and contributed the most in the sep-

aration of inoculated samples from control samples mainly at 30 dpi (Fig 6), which confirms

the results expressed by the analysis of variance (Fig 4). Likewise, individuals colonized by K.

variicola had a predominance of monoterpene hydrocarbons and ‘other compounds’ such as

hydrocarbons, esters, ketones, and so on (Fig 5 and Table 4). The contents of

compounds� 2.0% were not affected by this bacterial colonization in comparison to the con-

trol groups (Fig 6).

The compound dillapiole is a phenylpropanoid that has antioxidant, antimicrobial, insecti-

cidal, antitumor and anti-inflammatory activity [92–95]. Although it has been reported as the

main component of P. pellucida EOs occurring in northern Brazil [1,7,9], plant colonization

by E. asburiae and K. variicola did not affected its concentration. This probably happened

because plant colonization by symbiotic microorganisms usually affects species rich in ter-

penes [14,21,38,90]. Similar effects have also been observed after herbivore attack [96–98].

These organisms affect the content of plant compounds by upregulating the expression of

genes related to terpenoids, phenylpropanoids and other classes of compounds metabolic

pathways [99].

Terpenes are characterized by having basic isoprene structures (C5) and are toxic sub-

stances that can stop herbivore attack [72]. Components of this group are usually related to

plant defense mechanisms during colonization and infection [72,100] since they have insecti-

cidal, fungicidal and antibacterial activity [101–104]. This study showed improvements in the

concentrations of some classes of terpenes after bacteria symbiotic association with P. pellu-
cida. It also indicated that plant colonization by rhizobacteria may increase phenylpropanoids

contents since there was a rise in the concentration of the phenylpropanoid derivative

2,4,5-trimethoxystyrene.
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5. Conclusions

The inoculation of P. pellucida with E. asburiae strain EM56 and K. variicola strain EM09

proved to be an efficient alternative to promote plant growth in this species since these micro-

organisms improved plant development. Furthermore, these bacteria increased PAL enzyme

activity and total phenolic content which are both related to plant defense mechanisms during

biotic stress.

E. asburiae inoculation caused an increase mainly in the content of 2,4,5-trimethoxystyrene,

while K. variicola inoculation did not show any significant variations in the concentrations of

the major compounds. Both inoculations affected the classes of terpenes, but only E. asburiae
treatment increased the content of the class of phenylpropanoids and derivatives. These data

show that the production of secondary metabolites in P. pellucida can be optimized by rhizo-

bacteria inoculation, but factors such as the microorganism, the plant species and the plant

chemical profile should be considered. The next step of this research will be the inoculation of

both bacteria since it could improve even more plant growth and the production of secondary

metabolites.
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104. Vizcaı́no-Páez S, Pineda R, Garcı́a C, Gil J, Durango D. Metabolism and antifungal activity of saffrole,

dillapiole, and derivatives against Botryodliplodia theobromae and Colletotrichum acutatum. B. Lati-

noam. Caribe Pl. 2016; 15: 1–17.

PLOS ONE Changes in Peperomia pellucida after rhizobacteria inoculation

PLOS ONE | https://doi.org/10.1371/journal.pone.0262794 January 21, 2022 21 / 21

https://doi.org/10.1016/j.envexpbot.2019.04.002
https://doi.org/10.1039/c7np00057j
http://www.ncbi.nlm.nih.gov/pubmed/29722774
https://doi.org/10.1023/A%3A1013386921596
https://doi.org/10.1371/journal.pone.0262794

