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Abstract
The present work describes the chemistry and mineral-
ogy of soils such as Terra Preta Arqueol�ogica (TPA) or
Terra Preta de Índio (TPI) from the Bitoca I and II
sites, located in the Salobo Region (Caraj�as Mineral
Province, Par�a-Brazil). The results revealed chemical
and mineralogical characteristics that are similar to
other TPAs found throughout the Amazon region, such
as relatively high levels of Ca (average of 3600 ppm), P
(average of 850 ppm), Mn (average of 730 ppm), Zn
(average of 55 ppm), and Cu (average of 63 ppm). In
soils related to the characteristics of occupation by huts
and campfires, the mineralogical composition is repre-
sented by quartz, kaolinite, calcite, muscovite, anatase,
hematite, goethite, and gibbsite. Amorphous phases
have also been identified mainly as calcium phosphates
and organic matter (humic and fulvic acids). The
analysis of the features/structures described here helped
in the identification/verification of areas destined for
different activities within the sites.
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INTRODUCTION

The Amazonian soils modified by prehistoric man are known as Terra Preta (TP), Terra Preta
do Índio (TPI), Terra Preta Arqueol�ogica (TPA), Amazonian Dark Earth (ADE) and
Archaeoanthrosols (Glaser & Birk, 2012; Kämpf et al., 2009; Silva, 2009). These soils were formed
as a result of human occupation, and disposal of organic waste of different nature, which involved
the modification of physical, chemical, mineralogical, and microbiological properties (Glaser
et al., 2003; Lehmann, Kern, Glaser, & Woods, 2003; Ruivo et al., 2009; Tsai et al., 2009).

The dark color, prolonged permanence of relatively high levels of Ca, Mg, P, Mn, Zn, Cu,
and organic C, combined with ceramic fragments and lithic artifacts found in the anthropic
horizon, makes TPI a relevant topic in the understanding of studies of Amazonian archaeologi-
cal sites (Birk et al., 2011; Falcao et al., 2009; Glaser, 2007; Glaser & Birk, 2012; Lehmann,
Kern, German, et al., 2003; Schellekens et al., 2017; Schmidt et al., 2014; Taube et al., 2013;
Woods et al., 2009). These changes reflect the different uses, times of permanence of old
populations, the quantity and quality of discarded organic waste, and the performance of post-
occupational (bio) geochemical and pedogenetic processes (Matuk et al., 2020).

Tropical climatic conditions, especially temperature and humidity, impose limitations on
the conservation of archaeological remains of an organic nature, mainly. In this aspect, the use
of archeometric techniques has been essential in the interpretation of archaeological contexts
such as settlement patterns (Athayde & Silva-Lugo, 2018; Posey, 2019), archaeological features
and structures (Oonk et al., 2009; Wells et al., 2000; Wilson et al., 2008). Thus, in tropical
regions, particularly, anthropic soils are fundamental for the studies of settlement patterns, as
they mark the functional areas of old villages that present very different properties in their
occupation horizon (Costa et al., 2009; Moutinho et al., 2016).

According to these studies, high concentrations of Ca and P are consistently linked to
deposits of organic material that is of animal origin, whereas Cu, Mn, and Zn may be linked
to a variety of materials depending on the archaeological context, including mineral pigments,
carbonized particles, spaces intended for housing, or even cultivated areas (Falcão &
Borges, 2006; Wells et al., 2000; Wilson et al., 2008). A comparatively high concentration of
Hg, Fe, Mn, and Cu in the Piedras Negras site in Guatemala suggested regions of ceremonial
or handicraft activity. (Wells et al., 2000; Wilson et al., 2008).

According to the potential for linking chemical fingerprints with archaeological settings, it
is possible, to a certain extent, understanding the outcome of the cultural and ceremonial
diversity among human groups that occupied various levels of social organization in the past.
To comprehend certain aspects of ancient Amazonian behavior, this research aims to establish
geochemical relationships that identify archaeological features and structures, along with their
connection to functional regions resulting from pre-Columbian habitation.

The current research on the geochemical signature of Terra Preta sites in the eastern
Amazon adopts a multidisciplinary approach, enhancing our understanding of the region’s
archaeological and environmental history. The usage of multiple methodologies and a focus on
geochemical markers offer a more nuanced perspective on the relationship between ancient
human activities and the landscape, fostering a clearer understanding of Amazonian
civilizations.

MATERIALS AND METHODS

Location of the study area

Terra Preta de Indio soils, commonly known as Amazonian Dark Earths, are spread out over
the majority of the Amazon Basin. Terra preta, which translates to ‘black earth’ in
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Portuguese, stands out from the surrounding soils due to its dark tint. The distinctive charac-
teristics of terra preta, such as their high soil fertility, production capacity, and carbon levels,
which have significance for both present sustainable land use and the study of Amazonian civi-
lization development, are what spark interest in them. Although terra preta soils are common
throughout the Amazon Basin, little is known about where they might be found. It seems that
the central Amazon, between Manaus and Santarem, is where terra preta soils are most preva-
lent. The Bitoca I and II archaeological sites are in the municipality of Marab�a, southeast of
the state of Par�a, about 600 km from the capital Belém (Figure 1a). These sites were found on
the left bank of the Salobo Igarapé, on the low slope, on a terrace with flat parts (forming
terraces), and a gentle slope toward the creek. These are large-scale sites measuring approxi-
mately 300 m � 300 m, of the open, ceramic, and housing type, with the presence of TPA
stains and dark brown soil (Figure 1b). These stains are possibly related to areas of huts, as
they present evidence such as marks of holes in pillars and stakes; bonfires; simple ceramics;
and decorated in different ways, quartzite and quartz chips, polished axes, and digger (Silveira
et al., 2011).

Sampling and preparation—sample nomenclature

The samples used in this work were collected in archaeological salvage fieldwork coordinated
by Dr. Maura Silveira and Dr. Dirse Kern. After collection, the samples were coded (Table 1)
and stored in plastic bags for further chemical and mineralogical analysis.

Analytical techniques

X-ray diffraction (XRD)

To determine the mineralogical phases present, the soil samples were measured by XRD
analysis employing a XPERT PRO MPD diffractometer equipped with a PW 3040/60
(theta–theta), with Cu Ka1 radiation and secondary monochromator, operating at
40 kV/30 mA. The samples were pulverized and mounted into zero background sample holders
(obliquely cut silicon crystal). Each diffraction pattern was recorded at a 0.01 2 h step size and
count times of 5 s per step. All patterns were evaluated using X’pert Highscore Plus Software
from Panalytical.

F I GURE 1 (a) Location map of Bitoca I & II sites in Marab�a (b) Bitoca II site, with a view of TPA patches
(Silveira et al., 2008; Silveira et al., 2009).
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Infrared absorption spectrometry

The vibrational signatures in the infrared region of organic (e.g., C-O or C-C) and inorganic
compounds (e.g., P-O in phosphates, C-O in carbonates; Si-O in silicates) present in the samples
were recorded in a Bruker FTIR Equinox 55 spectrometer, model IFS66. The samples were
pulverized to obtain a fine powder and dispersed in KBr pellets (10 mg sample/300 mg KBr).
For each IR spectrum, 256 vacuum atmosphere scans were used with a resolution of 4 cm�1.
IR spectra were recorded using 55/S OPUS software.

Scanning electron microscopy (SEM)

The mineralogical characterizations in the TPA samples were complemented by scanning
electron microscopy, coupled with energy dispersion (SEM-EDS), which allowed capturing the
images and performing micropunctual chemical determinations. The samples were dried at
50�C for 4 h, placed on aluminum platforms, with double-sided carbon adhesive tape and
metalized with gold. The electronic backscatter detector allowed the elaboration of chemical
concentration distribution maps. The equipment used was a model LEO I450 VP 500 DP
microscope and Gresham SED detector, using IXRF software.

Chemical analysis

The TPA samples were air dried and pulverized in agate grade for total chemistry analysis for
the elements Ca, P, Zn, Cu, and Mn. The analyzes were performed by ICP-MS, after fusion
with LiBO2 and dissolution with aqua regia, performed at the commercial laboratory Geosol
LTDA. For analysis of TPI fertility, the methodological procedures are summarized in the
Table 2.

TABLE 1 Origin and nomenclature of the samples in this work.

Archaeological site Code Origin

E7T1SE-7 Bonfire

E7T1SE-6 Bonfire

E6T1N-5 Bonfire

E3SO-1A4 Sediment with ash and burnt clay from bonfire

E2S3–4 Pile hole sediment, level top

Bitoca 1 E2S13SO-15 Block with fat, central area

E1S8–6 Ceramics and soils impregnated with possible pork fat

E5T1S-6 Pile hole sediment

E9T2NE-6A Dark stain feature, walls

E9T1NE-6A Spot 2, dark spot feature

E2S4–3A Coal stain

E4S7–1 Hut

E10S1–3 Hut

Bitoca 2 E4S5–4 Stake hole

E4S7–4 Dark stake hole

E4S1–5 Hole interior

1194 HOSN ET AL.
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RESULTS AND DISCUSSIONS

Mineralogical characterization

Figure 2 shows the X-ray diffractograms of the samples from the Bitoca I and II sites. As can
be seen, the samples mostly showed common mineralogy that was composed of kaolinite and
quartz, which was well correlated with the mineralogy of Amazonian soils (Costa et al., 2009;
da Costa et al., 2011; Huam�an et al., 2021; Ishida et al., 2018; Junior et al., 2021). The presence
of the amorphous metakaolinite phase was also identified by raising the background between
20 and 30� (2 theta) of the XRD patterns of the samples studied, the formation of which occurs
due to the high temperature heating of the kaolinite mineral. Other common mineral phases
were identified such as muscovite, anatase, and gibbsite, but in lower quantities. Cristobalite
present in most samples (E1S8-6, E2S3-4, E5T1S-6, E6T1N-5, E7T1SE-7, E9T2NE-6, E4S7-4,
E4S5-4, E10S1-3) suggested the calcination of amorphous silica, a phase normally found in
plants from the region such as cariapé and cauixi (da Costa et al., 2011; Fernandes &
Salomão, 2018). It was also observed the peaks due to the presence of calcite (CaCO3) in the
samples E3SO-1A4 (sediment with ash and burnt clay from a campfire), E4S5-4 (stake hole),
and E10S1-3 (hut), which could be related to shell deposits, also known as sambaquis, or even
associated with diet (consumption of shellfish), accumulation of bone remains, or funerary
rituals (Klokler et al., 2010). The samples E2S13SO-5, E7T1SE-6, and E10S1-3 were the ones
with the highest participation of hematite and goethite, which according to da Costa et al.
(2009), the presence of these iron (III) oxyhydroxide minerals may indicate intense organic
matter activity in the reduction and degradation of the samples. In addition to being one of the
primary soil types seen in the early stages of human settlements, yellow latosol, a form of soil
antecedent to TPI, is also one of its principal soil types (Damaceno et al., 2020).

The infrared IR spectra of the samples identified by X-ray diffraction (Bitoca I) were
obtained to confirm the phases and are shown in Figure 3. Discussions of the results obtained
were divided into three regions as shown below,

All samples showed vibration bands at 3690 ± 10, 3650 ± 10, and 3620 ± 10 cm�1

(Figure 3). These bands are related to the Al-O-H stretching vibrations of kaolinite. The band
around 3440 ± 10 cm�1 (E1S8-6, E5T1S-6, E6T1N-5, and E7T1SE-7), according to Ray
et al. (1999) and Beutelspacher and van der Marel (1976), refers to the Al-O-H stretching of
the mineral gibbsite. Bands around 3400 cm�1 (E3SO-1A4, E2S3-4) refer to the O-H stretches
of carboxylic groups and aromatic rings of humic and fulvic acids (Jayaganesh &
Senthurpandian, 2010; Qian et al., 2022), as well as C-H aliphatic bonds of these substances

TABLE 2 Methodologies applied in chemical analysis of soil samples.

Elements Methods used Analytical technique Reference

Dissolved organic matter Potassium permanganate boiling
method

Fluorescence spectroscopy Liu et al., 2020

Organic matter Frenkel-Halsey-Hill method Infrared spectroscopy Liu et al., 2020

Soil organic matter Mathematical fractionation
approach

Thermogravimetry Kučerík et al., 2018

Microplastics Pyrolytic procedure Thermoanalytical methods Becker et al., 2020

Heavy metals Microwave digestion Inductively coupled plasma—
mass spectrometry (ICP-MS),

Choi et al., 2019

Pb2+ Microfluidic paper-based
solution sampling

Potentiometry Ding et al., 2020

GEOCHEMICAL SIGNATURE IDENTIFYING FEATURES AND ARCHAEOLOGICAL STRUCTURES IN
EASTERN AMAZONIAN TERRA PRETA SITES
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around 2922 and 2851 cm�1 in samples E2S4-3 and E9T2NE-6 (Beutelspacher & van der
Marel, 1976). Calcite CO3

2� stretch bands were observed at 3210, 2515, and 2325 cm�1

(Hsiao et al., 2019) in E3SO-1A4.

F I GURE 2 X-ray diffraction patterns found in samples from the Bitoca I and II sites. A = anatase, C = calcite,
Gb = gibbsite, go = goethite, he = hematite, K = kaolinite, M = muscovite, Q = quartz.

F I GURE 3 Infrared spectra of samples from the Bitoca I site.

1196 HOSN ET AL.
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In the 2000–1100 cm�1 region of E2S13SO-15, E6T1N-5, E7T1SE-7, and E9T1NE-6 samples
exhibited similar bands of O-H groups (1650 and 1630 cm�1) are generally adsorbed on the
surface and in the lattice of minerals (kaolinite, goethite, and gibbsite) (Figure 3). The band at
1798 cm�1 in sample E3SO-1A4 corresponds to the stretching of the H-O bond of amorphous
CaCO3 (Luna Vera et al., 2018), whereas the band at 1445 cm�1 relates to the ν3-CO3 stretching
of crystalline calcite (Devajaran et al., 2007). Stretches of O-H, C-O groups in phenols, and
COO– and C-H strains of CH3 from humic acids were identified at 1385 and 1376 cm�1 in
almost all samples except E9T2NE-6 (Sakellariadou, 2006). The bands at 1115 and 1030 cm�1

observed in samples E2S13SO-5, E2S4-3, E2S3-4, E5T1S-6, and E9T2NE-6 refer to the
stretching of tetrahedra of amorphous calcium phosphate groups because they were not identified
the presence of phosphate minerals in the sample (Pinzaru & Onac, 2009; Rokita et al., 2000).
This inorganic compound may be associated with the presence of bone and cartilage derivatives.

The bands in the 1100–400 cm�1 regions corresponded to the metal-oxygen or non-
metal-oxygen vibrations of the minerals present. For example, Fe-O vibration bands of goethite
and hematite at 695, 539, 471 cm�1 (Liu et al., 2021); Si-O stretch bands at 1102, 1033,
796, 471, and 431 cm�1 of quartz and kaolinite (Tchakoute et al., 2015); Ti-O vibration bands
for anatase at 748 and 540 cm�1. Vibration bands Al-O-H from gibbsite and kaolinite at
939 and 914 cm�1 and Si-O-Al from kaolinite at 1010, 752, 695, and 539 cm�1 are found (Sadri
et al., 2018). A band at 877 cm�1 in sample E3SO-1A4 refers to ν2-CO3 stretching of calcite
from mollusc shells (Loftus et al., 2015). Stretching of the P-O bonds of the PO4 tetrahedra has
also been identified that can be correlated to an amorphous phosphate phase at 940, 700, and
430 cm�1 (Kababya et al., 2015; Rokita et al., 2000).

F I GURE 4 Image and semiquantitative chemical analysis obtained by SEM-EDS of samples collected at the
Bitoca 1 site: (a) E3SO-1A4; (b) E2S3-4; (c) E6T1N-5; (d) E1S8-6.
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A morphological investigation of TPI samples from Bitoca 1 was investigated by scanning
electron microscopy with spot chemical analysis by EDS (Figure 4).

For sample E3SO-1A4 (Figure 4a), an agglomerate of small spherical particles with an
average size of 3–6 μm, was clearly observed. Chemical analysis by EDS revealed the majority
presence of carbon, oxygen, and calcium, which suggested the presence of residues of CaCO3-
based materials in this sample. Cristobalite crystals with a well-formed tetrahedral habit with a
diameter of 70 m were identified in E2S3-4 (Figure 4b), corroborating the X-ray and infrared
diffraction data. Bone fragments were visualized in the E6T1N-5 sample (Figure 4c), whereas
charcoal micro-aggregates in E1S8-6 (Figure 4d). The Figure 5a (E10-3) showed images of
platelets, typical of kaolinite, which is a clay mineral common in tropical regions, especially in
the Amazon region. See also the quartz minerals (E4S1-5) in Figure 5b and the anatase mineral
(E4S5-4) in Figure 5c. These results corroborated those of XRD.

Chemical characterization of TPI

Figure 6 shows the results of the total chemical composition for Ca and P of the Bitoca I and II
samples. Based on the results obtained, the sample E4S7-1 is observed to have the highest levels
of Ca (10,460 ppm) and P (1700 ppm). Similar behavior to that observed in sample E10S1-3
showed high levels of Ca (3380 ppm) and P (1500 ppm). Considering that such samples come
from hut structures, it is suggested that they were enriched from the day-to-day activities
(cooking, disposal of food, animal and vegetable residues, etc.) carried out by prehistoric man
(Kämpf & Kern, 2005; Lima et al., 2002). Samples E3SO-1A4, E7T1SE-7, E7T1SE-6,
and E6T1N5 (fires) also showed high levels of the macroelements studied, ranging from

F I GURE 5 Image and semiquantitative chemical analysis obtained by SEM-EDS of samples collected at the
Bitoca 2 site: (a) E10-3; (b) E4S1-5; (c) E4S5-4.

1198 HOSN ET AL.
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9805–2049 ppm for Ca and from 1561–694 ppm for P (Kern et al., 2017; Lehmann, Kern,
German, et al., 2003; Macedo et al., 2019; Quesada et al., 2020; Silva & et al., 2021). These
bonfires were believed to be used for cooking food (fish, chicken, pork) or even in religious
rituals that sacrificed animals.

The values of the microelements (Mn, Cu, and Zn) were also considered high and are shown
in Appendix S1. The element Mn showed the highest levels ranging from 1030 to 340 ppm,
whereas Zn was in the range of 75 to 26 ppm and Cu between 93 and 48 ppm. In the case of the
samples referring to bonfires (E3SO-1A4, E7T1SE-7, E7T1SE-6, and E6T1N5) and huts
(E4S7–1 and E10S1–3), the enrichment of these microelements may have been generated from
the palm leaves normally used in the construction or burning of these structures (Li
et al., 2016).

The characterization of the fertility parameters of TPI soils was carried out and the results
are shown in Table 3.

The pH values revealed an average of 5.26 for H2O and 5.16 for KCl (1 mol. L�1), and are
in agreement with the average values of pH observed for TPI found in the Amazon (Falcão &
Borges, 2006; Moreira, 2007). Samples EIS8-6 and E6TIN-5 showed the highest negative pH
values and, at the same time, presented the highest levels of Al3+ (0.91 and 0.89 cmolc/kg).
These results indicate a higher content of silicate minerals (Barker et al., 2018), which is in
agreement with the results obtained from X-ray diffraction. On the other hand, samples
E5T1S-6 and E9T2NE-6 showed higher values of positive pH, which is indicative of the major-
ity presence of the aluminum and iron oxide phases.

The samples referring to sediments collected in a bowl (E9T2NE-6), main hole sediments
(E1S8-6 and E2S3-4), and campfire (E3SO-1A4, E7T1SE-7, E7T1SE-6, and E6T1N5) showed
the highest levels of organic matter, organic carbon, and nitrogen. As reported by Da Cruz
et al. (2022), the higher the organic matter content, the greater the presence of macro and
micronutrients in the sample (Liu et al., 2020). The results observed in Table 3 confirm the
observations of these authors, because the samples that presented the highest content of organic
matter were, in a way, those that also showed high levels of Ca, K, P, Mg, Cu, Zn, and
Mn. Regarding the values of exchangeable Ca and available P, high levels were observed in the
campfire samples (E6T1N-5 and E7T1SE-7), sediment collected in a bowl (E9T2NE-6), and
pile hole sediment (E2S3–4). The relatively high levels of Ca (32.9 cmolc/Kg) and P (374 mg/kg)
in E9T2NE-6 suggest that the bowl’s function was for cooking or storing food. In bonfires, it
may be related to the accumulation of ash, fish bones, or even other animals (Casey &
Ludwig, 2018). Regarding the results of SB and CTC of the structures, the values obtained were

F I GURE 6 Total chemical composition of ca and P of Bitoca I samples (E7T1SE-7; E7T1SE-6; E6T1N-5; E3SO-
1A4; E2 S3-4; E2S13SO-15; E1S8-6; E5T1S-6; E9T2NE-6A; E9T1NE-6 e E2S4-3A) e Bitoca II (E4S7-1; E10S1-3;
E4S5-4; E4S7-4 e E4S1-5).
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very high, ranging from 18.08–54.42 cmolc/Kg for SB and 21.86–63.92 cmol/Kg for CTC.
It stands out among the values obtained from the pile hole sediment samples (E1S8-6 and
E5T1S-5) that showed high levels for SB (54.42 and 37.27 cmolc/Kg) and CTC (63.92 and
47.97 cmolc/Kg), which according to studies can be considered as very good (Robinson
et al., 2021).

CONCLUSION

The results of the mineralogical and geochemical characterization of the soil samples from the
Bitoca I and II sites confirm that they were formed by various human occupation activities by
the original peoples of the Amazon and can contribute to the discussion on the fertility of
anthrosols (anthropogenic soils) found in the region. The presence of kaolinite with a low
degree of crystallinity and metakaolinite (an amorphous phase originating from kaolinite under
heating) seems to represent products of weathering or partial burning through activities/rituals
carried out on the sites. The identification of calcite and amorphous calcium phosphate shows
that the soil was enriched with these inorganic phases as a result of food discards from a diet
rich in fish, molluscs and crustaceans, or even rituals. The chemical similarity of the TPA soils
at both sites suggests that they were developed through pedogenetic transformation with the
introduction of organic and inorganic materials (Ca, P, Mn, Cu, and Zn), also the result of
human activity (bones, fruit, and fleshy materials).
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