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A B S T R A C T   

Artisanal gold mining has generated tailings highly contaminated by arsenic (As) in Cachoeira do Piriá, eastern 
Amazon, leading to severe risks to the environment. Such risks should be mitigated considering the bioavailable 
concentration of the element, since it implies immediate damage to the ecosystem. The objective of this study 
was to evaluate the potential of biochars in mitigating the environmental risks of bioavailable As concentrations 
in gold mining tailings from underground and cyanidation exploration. The biochar addition increased mineral 
components, cation retention, phosphorus in all fractions, and organic and inorganic carbon. The bioavailability 
of As was reduced after adding the biochars, following the order palm kernel cake biochar > Brazil nut shell 
biochar > açaí seed biochar, with reductions of up to 13 mg kg− 1 in the underground mining tailings and 17 mg 
kg− 1 in the cyanidation mining tailings. These results contributed to the statistically significant reduction of the 
environmental risks in both mining tailings (6–17% in the underground mining tailings and 9–20% in the 
cyanidation mining tailings), which was emphasized by Pearson’s correlation and multivariate analyzes. The 
incorporation of the bioavailable fractions of As (from sequential extraction) in the environmental risk assess-
ment was a promising method for evaluating the efficiency of biochars in mitigating the damage caused by this 
metalloid in gold mining tailings.   

1. Introduction 

Arsenic (As) is the most toxic element according to the Agency for 
Toxic Substances and Disease Registry (ATSDR, 2017), strongly associ-
ated with carcinogenesis in humans (Jaishankar et al., 2014; Singh et al., 
2007). The main anthropic source of this metalloid in the environment is 
mining, due to the exposure of As-rich minerals to weathering (Drahota 
et al., 2014; Ono et al., 2012; Souza Neto et al., 2020), which can cause 
heavy environmental contamination, including soils in areas far from 
the exploration sites, as well as water bodies that could provide water for 
human consumption and industrial activities (Panagopoulos, 2021a, 
2021b; 2021c). This problem is more pronounced in artisanal mining 
areas, where low mineral recovery techniques are used and the residues 
are improperly deposited in the environment (Souza Neto et al., 2020). 

Total concentrations of potentially toxic elements (PTEs), including 
As, are usually adopted to assess the risks associated with these elements 
in contaminated areas. However, this information is not a proper pre-
dictor when evaluated individually, due to the fact that it does not reveal 
the mobility and bioavailability of these contaminants (Adamo et al., 
2018; Alan and Kara, 2019; Gope et al., 2017; Nkinahamira et al., 2019). 
On the other hand, sequential extractions indicate the main fractions in 
which the PTEs are linked (Gabarrón et al., 2019), allowing to under-
stand the actual risks caused by these elements in contaminated mate-
rials (Huang et al., 2016; Jayarathne et al., 2018). 

Biochar is a carbonaceous material resulting from the pyrolysis of 
biomass under low oxygenation, suitable for controlling contamination 
(Lehmann et al., 2006, 2011; Penido et al., 2019; Uchimiya et al., 2011) 
and improving soil fertility and biological properties (Bashir et al., 2018; 
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Chen et al., 2020; Liu et al., 2016; Penido et al., 2019; Sun et al., 2020; 
Wang et al., 2021). Some studies have evaluated the potential of biochar 
for environmental remediation using sequential extractions, showing 
how this material affects chemical fractionation, mobility and 
bioavailability of PTEs (Chen et al., 2020; Huang et al., 2020; L. Lin 
et al., 2019; Wan et al., 2020; Wang et al., 2020a). 

The effects of biochar on the bioavailability of PTEs are related to 
complexation, adsorption, and precipitation processes promoted by its 
physicochemical properties (Derakhshan Nejad et al., 2021; Mujtaba 
Munir et al., 2020; Yuan et al., 2021) and concentrations of metallic 
ions, such as iron (Fe), manganese (Mn), calcium (Ca) and magnesium 
(Mg), as well as non-metallic ions, such as phosphorus (P) (Xiang et al., 
2020; Xiao et al., 2020; Yin et al., 2021). The application of biochar does 
not change the total concentrations of PTEs, but rather the bioavailable 
fraction, which most interacts with the environment (O’Connor et al., 
2018; Wang et al., 2021) and threatens the food chain, due to the greater 
potential for absorption by plants (O’Connor et al., 2018; Peijnenburg, 
2020). Thus, our study is a pioneer in assessing the environmental risk of 
As based on the bioavailable concentrations of this element, in gold 
mining tailings treated with two biochars never tested before for this 
purpose. 

In Cachoeira do Piriá, northeastern Amazon, different forms of 
artisanal gold mining have produced tailings highly contaminated by As, 
which are improperly deposited in the environment and require reme-
diation to protect the ecosystem and local population (Souza Neto et al., 
2020). The use of agro-industrial residues (largely produced in the 
Amazon), in the form of biochar, can be an interesting alternative for the 
remediation of these tailings, but this has not been studied so far. 
Therefore, the objectives of this study were: i) to evaluate the effect of 
biochars on the mobilization of As in two types of gold mining tailings, 
and ii) to characterize the efficiency of biochars in reducing the envi-
ronmental risks of As based on the bioavailable concentrations of this 
metalloid. 

2. Material and methods 

2.1. Collection of mining wastes 

Mining wastes were collected in the municipality of Cachoeira do 
Piriá, state of Pará, northern Brazil. In this area, mining was carried out 
by both companies and artisanal workers until 2013, in sites where gold 
occurs at depths ranging from 40 to 150 m, in quartz veins, vein net-
works, and shear zones (Mosher, 2013; Santos, 2004). Currently, 
exploration is performed only by a cooperative through three main 
ways: i) underground mining, whose tailings have different deposition 
periods; ii) cyanidation mining, in which underground mining tailings 
are reprocessed using cyanide; and iii) colluvial mining (Souza Neto 
et al., 2020).- 

This study considered two tailings highly contaminated by As (Souza 
Neto et al., 2020), identified as: i) underground mining tailings, 
deposited seven years before the collection, from exploration at a depth 
of approximately 150 m, in which amalgamation is carried out with the 
conduction of the leachate (solid material and water) on copper plates 
containing mercury for gold retention, occupying an area greater than 
12 ha (Fig. 1S); and ii) cyanidation mining tailings, from recent 
reprocessing of underground mining tailings with alkaline cyanide so-
lution to complex the residual gold, deposited in area equivalent to 3 ha 
(Fig. 1S). Both tailings were collected in April 2018, at random to obtain 
a better representation of each deposition area. 

2.2. Production of biochars 

Açaí palm (Euterpe oleracea Mart.) seeds, Brazil nut (Bertholletia 
excelsa Bonpl.) shells, and palm kernel cake from the processing of oil 
palm (Elaeis guineensis Jacq.) were used in the production of biochars. 
Açaí seeds and Brazil nut shells were collected at fairs in the 

municipality of Belém, state of Pará, where the respective pulp and nuts 
are processed and sold. Palm kernel cake was collected at a company 
located in the municipality of Santa Bárbara do Pará, also in the state of 
Pará. These materials were selected due to the high regional production, 
varied proportions of lignin, cellulose and hemicellulose, and the po-
tential as adsorbent materials, which is indicated for the remediation of 
degraded areas (Dias et al., 2019). 

These wastes were washed with deionized water and dried in an oven 
at 50 ◦C for 24 h. After that, 100 g of each material were weighed, placed 
in porcelain crucibles, and pyrolyzed in a muffle oven at 700 ◦C, under a 
heating rate of 3.33 ◦C/min. This temperature was adopted due to the 
generation of biochars with better characteristics and greater adsorption 
capacity (Dias et al., 2019). The biochars were crushed, sieved (100 
mesh), and identified as: B1 - açaí seed biochar; B2 - Brazil nut shell 
biochar; and B3 - palm kernel cake biochar. 

2.3. Characterization of mining tailings and biochars 

The concentrations of As in the tailings were extracted according to 
the EPA 3051A method (USEPA, 2007), in which 9 mL HNO3 and 3 mL 
HCl were applied in 0.5 g of each sample, in triplicate, with digestion in 
a microwave oven (CEM corporation, model MARS 5®). The quantifi-
cation was carried out using inductively coupled plasma mass spec-
trometry (ICP-MS, PerkinElmer), including the ERM® CC-141 certified 
reference material and blank samples to ensure analytical quality. The 
recovery rate of As was 95%. 

The mineralogical characterization (0.15 mm fine fraction) was 
performed by PANalytical X’PERT PRO MPD (PW 3040/60) diffrac-
tometer powder method, with goniometer PW3050/60 (θ/θ), ceramic- 
ray tubes with Cu (Kα1 = 1.540598 Å), model PW3373/00, long fine 
focus (2200 W - 60 kV), Kβ nickel filter. The instrumental scanning 
conditions were: 4◦–70◦2θ, step size 0.02◦ 2θ and time/step of 10 s, 
divergent and automatic slit and anti-spreading of 4◦; 10-mm mask; 
sample in circular motion with frequency of 1 rotation/s for all samples. 
The materials were identified using X-ray diffraction (Fig. 2S). 

In the characterization of biochars, the pH in water was determined 
at a ratio of 1:10 (solid:solution) (Singh et al., 2017), and the point of 
zero charge (PZC) was found according to Uchimiya et al. (2011), when 
the initial and final pH values were equal. The total levels of C, H, N and 
S were determined using an elemental analyzer (PerkinElmer, model 
2400) and the ash content was quantified by combustion of 1 g of bio-
char in a muffle oven, maintained at 500 ◦C for 1 h and 700 ◦C for 2 h 
(Melo et al., 2013). 

The pseudo total concentrations of elements were extracted using the 
same method used in the characterization of tailings (EPA 3051A) 
(USEPA, 2007). The analyzes were performed in triplicate, including the 
ERM® CC-141 certified reference material and blank samples, in order 
to ensure analytical quality. The recovery rates ranged from 85 to 97%. 

2.4. Biochar application experiment 

The two artisanal mining tailings were subjected to the application of 
5% of biochar. Each treatment (Control, B1, B2 and B3) had five repli-
cations, totaling 20 experimental units per tailing, which were con-
ducted in a completely randomized design and maintained at 50% of the 
total water holding capacity throughout the incubation period, with 
addition of ultrapure water (Milli-Q). 

One year after the addition of biochars, the pseudo total concentra-
tions of Al, Ca, Co, Cu, Fe, K, Mg, Mn, P, S and Zn were quantified by the 
method EPA 3051A (USEPA, 2007), with recovery rates varying from 87 
to 93%. The pH was obtained with a potentiometer in water (1:10 ratio) 
(Souza et al., 2019) and the cation exchange capacity (CEC) was quan-
tified by the modified method of NH4-acetate displacement (Yuan et al., 
2011). Contents of organic carbon (OC) and inorganic carbon (IC) were 
determined by loss of mass via dry combustion in a muffle oven, under 
temperatures of 450 and 950 ◦C, respectively. Total carbon (TC) was 
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obtained by the sum of OC and IC (Hussain et al., 2019). 
The fractionation of P was performed due to the role that this 

element plays on the dynamics of As (Xiang et al., 2020; Xiao et al., 
2020; Yin et al., 2021). This analysis followed the methodology pro-
posed by He et al. (2014), which allowed to obtain the following frac-
tions: i) soluble inorganic P (Psol), extracted using ultrapure water; ii) 
labile inorganic P (Plab), extracted using 0.5 M NaHCO3; iii) adsorbed 
inorganic P (Pads), extracted using 0.1 M NaOH; iv) P associated with 
minerals (Pmin), extracted using 1 M HCl; and v) residual P (Pres), ob-
tained with acid digestion (method EPA 3051A) of the solid material 
remaining from the previous extractions. The Psol, Plab, Pads, and Pmin 
fractions were quantified by the colorimetric method described by 
Murphy and Riley (1962), while the Pres fraction was quantified using 
ICP-MS. 

2.5. Chemical fractionation of as 

The sequential extraction developed by Drahota et al. (2014) was 
used to study the chemical fractionation of As. This method can be 
adopted reliably for the partitioning of As in mining wastes, allowing to 
determine the association of this element with the following fractions: 
readily soluble (F1); adsorbed (F2); amorphous and poorly-crystalline 
arsenates, oxides and hydroxosulfates of Fe (F3); well-crystalline arse-
nates, oxides, and hydroxosulfates of Fe (F4); and sulfides and arsenides 
(F5). 

The F1 fraction was extracted with ultrapure water (1:25 sample: 
water), stirred for 10 h; the F2 fraction was obtained with 0.01 M 
NH4H2PO4 (1:100 sample:solution), stirred for 16 h; the F3 fraction was 
extracted with 0.2 M NH4-oxalate/oxalic acid (1:100 sample:solution, in 
the dark, pH 3, stirred for 2 h; the F4 fraction was extracted with 0.2 M 
NH4-oxalate/oxalic acid (1:100 sample:solution, pH 3, at 80 ◦C), stirred 
for 4 h; and the F5 fraction was extracted with KCl/HCl/KHNO3 solution 
(1:100 sample:solution). The concentrations were obtained by flame 
atomic absorption spectrometry (FAAS) (Thermo Scientific, model 
iCE3000) with a hydride generator (Thermo Scientific, model VP100). 
To guarantee the analytical quality, these analyzes were performed in 
triplicate and included a blank sample in each battery. The recovery rate 
of As was represented by the ratio between the sum of the concentrations 
found in the F1, F2, F3, F4 and F5 fractions and the total concentration, 
varying from 92.2 to 97.3%. 

2.6. Environmental risk assessment 

In this study, the bioavailable concentration (BAC) of As was rep-
resented by the soluble and adsorbed fractions (F1 + F2), due to the 
easier release of the metalloid from these fractions to the ecosystem 
(Dong et al., 2020; Jayarathne et al., 2018; Silva Júnior et al., 2019). In 
order to understand the role of biochars in mitigating the environmental 
risks associated with As in the studied mining tailings, the potential 
ecological risk index (PERI) was calculated. 

The PERI was first proposed by Hakanson (1980), to assess the 
impact of PTEs on ecosystems considering pseudo total concentrations 
(Zhang et al., 2018). Although this index has been widely used to study 
the ecological risk in soils and mining wastes (Kowalska et al., 2018; W. 
Lin et al., 2019; Pereira et al., 2020; Tapia-Gatica et al., 2020; Xiao et al., 
2019), it can overestimate the risks by not considering the bioavailable 
fraction, which has immediate effect on the ecosystem (O’Connor et al., 
2018; Peijnenburg, 2020). Therefore, the bioavailable concentrations 
were incorporated into the calculation of the modified ecological risk 
index (PERIm) according to the methodology proposed by Jayarathne 
et al. (2018), following equation (1): 

PERIm =TAs × (
BACAs

NCAs
) Equation 1  

Where TAs is the toxic response factor of As (10) (Hakanson, 1980); 

BACAs is the sum of the As concentrations (mg kg− 1) in the F1 and F2 
fractions (bioavailable fraction); and NCAs is the concentration of As in 
the reference area (2.06 mg kg− 1) (Souza Neto et al., 2020). The results 
were interpreted according to Hakanson (1980), where PERI ≤40 in-
dicates low risk, 40 < PERI ≤80 indicates moderate risk, 80 < PERI 
≤160 indicates considerable risk, 160 < PERI ≤320 indicates high risk, 
and 320 < PERI indicates very high risk. 

2.7. Statistical analyzes 

The results were submitted to the Shapiro-Wilk normality test (p <
0.05). Given normality, an analysis of variance (ANOVA) was performed 
and the averages were compared using the Tukey test (p < 0.05). Re-
lationships between the properties of the biochars and As fractions in the 
tailings were evaluated by principal component analysis (PCA) and 
principal coordinate analysis (PCoA). In addition, to corroborate the 
results obtained in the PCA and PCoA, Pearson’s correlation analysis (p 
< 0.05) was carried out. 

A multiple linear regression analysis was performed to generate a 
robust model for estimating the bioavailability of As. Variables for 
modeling were selected using Pearson’s correlation (p < 0.05), while the 
most appropriate model was selected based on the F test (p < 0.05) and 
AIC (Akaike Information Criterion) values. The equation of the multiple 
linear regression was obtained by the Stepwise method, eliminating the 
variables without statistical significance for the model. The precision 
and accuracy of the selected model were assessed using the coefficient of 
determination (R2), adjusted coefficient of determination (R2 adjusted), 
and normalized root mean square error (NRMSE) (Waterlot et al., 2016). 
All statistical analyzes were performed using R, version 4.1.1 (R Core 
Team, 2021). 

3. Results and discussion 

3.1. General characteristics of biochars and mining tailings 

All biochars studied showed alkaline pH (Table 1), which is related 
to the accumulation of ash, common in the pyrolysis of organic materials 
under high temperatures (Adhikari et al., 2019). The ash content had an 
inverse behavior (B3 > B1 > B2) in relation to the carbon content (B2 >
B1 > B3). Biochars with higher ash contents, such as B1 and B3, are rich 
in inorganic compounds (Domingues et al., 2017) and have lower car-
bon contents. On the other hand, the lower ash content in B2 is related to 
the higher carbon content, resulting from the high content of lignin in 

Table 1 
Characterization of açaí seed (B1), Brazil nut shell (B2) and palm kernel cake 
(B3) biochars.  

Property Biochar 

B1 B2 B3 

pH (in water) 9.70 ± 0.49 9.90 ± 0.50 8.88 ± 0.44 
Ash content (%) 4.80 ± 0.11 1.77 ± 0.04 10.19 ± 0.23 
Point of zero charge 3.30 ± 0.02 6.75 ± 0.02 5.13 ± 0.02 
Al (g kg− 1) 0.11 ± 0.01 0.11 ± 0.01 0.66 ± 0.03 
Ca (g kg− 1) 1.06 ± 0.02 1.73 ± 0.04 6.3 ± 0.14 
Fe (g kg− 1) 1.01 ± 0.02 2.34 ± 0.02 3.19 ± 0.02 
Mg (g kg− 1) 8.44 ± 0.42 4.29 ± 0.21 51.00 ± 2.55 
Mn (g kg− 1) 0.46 ± 0.01 0.04 ± 0.00 0.428 ± 0.01 
S (g kg− 1) 0.23 ± 0.02 0.35 ± 0.02 0.12 ± 0.02 
Soluble P (g kg− 1) 1.25 ± 0.06 0.33 ± 0.02 3.27 ± 0.16 
Labile P (g kg− 1) 0.16 ± 0.00 0.03 ± 0.00 3.39 ± 0.08 
Adsorbed P (g kg− 1) 0.02 ± 0.02 0.01 ± 0.02 0.70 ± 0.02 
Mineral-associated P (g kg− 1) 0.36 ± 0.02 0.15 ± 0.01 3.05 ± 0.15 
Total P (g kg− 1) 2.03 ± 0.05 0.61 ± 0.01 10.06 ± 0.23 
C (%) 79.2 ± 3.96 80.30 ± 4.02 67.22 ± 3.36 
H (%) 1.70 ± 0.04 2.22 ± 0.05 1.99 ± 0.05 
O (%) 11.60 ± 0.02 14.12 ± 0.02 15.00 ± 0.02 
N (%) 1.86 ± 0.02 1.12 ± 0.02 5.60 ± 0.02  
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the source (Dias et al., 2019). 
The biochars presented varied levels of P, Ca, Mg, Mn, Fe and S 

(Table 1). Such variations can be explained by the different chemical 
compositions of the materials used as sources (Wang et al., 2021). The 
fractions of P followed the same trend as the total contents of this 
element (B3 > B1 > B2). In the environment, P tends to be available 
after the mineralization of organic material (Wierzbowska et al., 2020), 
which occurs through pyrolysis in the case of biochars (Adhikari et al., 
2019; He et al., 2014). 

The pseudo total concentrations of elements were varied in the two 
gold mining tailings (Table 2), mainly due to the different exploration 
processes. In both materials, the concentrations of As were extremely 
higher than the quality reference value (1.4 mg kg− 1) established for 
soils from the state of Pará (Fernandes et al., 2018) and the investigation 
value (35 mg kg− 1) established by the National Environment Council for 
Brazilian soils (CONAMA, 2009), suggesting potential risks to human 
health due to As exposure. 

The underground mining tailings showed a higher concentration of 
As when compared to the cyanidation mining tailings, which may be 
directly related to losses during the dissolution of minerals in cyanida-
tion (Kyle et al., 2012). Such losses can harm the environment and 
human health due to the contamination of soil, water, and plants (Per-
eira et al., 2020; Souza Neto et al., 2020). The concentrations found in 
both tailings are higher than those found by Souza et al. (2017) in Serra 
Pelada, Brazil, and by Ding et al. (2016) in China. 

3.2. Influence of biochars on tailings properties 

The addition of biochars increased the concentrations of Co, K, Mn, P 
and S in the underground mining tailings, as well as Fe, Ca, Cu, K, Mg, 
Mn, P and S in the cyanidation mining tailings (Table 3). These findings 
indicate that biochars were relevant sources of inorganic components, 
which is commonly observed in studies assessing these materials. In a 
low fertility soil from Nepal, the addition of biochar improved the levels 
of Ca, Mg, K and P (Pandit et al., 2018). Biochars produced with residues 
from the southeastern Brazil increased the levels of K and Ca in the soil 
(Domingues et al., 2017). 

The fractionation of P was modified by the application of biochar in 
both tailings (Table 4). B3 added higher levels of P in all fractions, which 
is related to the higher total concentrations in this material, followed by 
B1 and B2 (Table 1). P-rich biomasses, such as palm kernel cake (used in 
the production of B3), tend to release high levels of this element during 
pyrolysis (Wang et al., 2021). After the application of biochar, the 
availability of P is controlled by the biological activity in the environ-
ment, in addition to reactions with inorganic colloids (Hosseini et al., 
2019; Richardson and Simpson, 2011). 

The addition of biochar increased the CEC in the tailings (Table 4), 
which is related to the negative charges from organic groups (with high 
reactivity) and alkaline components of ash, increasing the amount of 

cation sorption sites (Hailegnaw et al., 2019; Munera-Echeverri et al., 
2018). In addition to CEC, the C content also increased with the addition 
of biochars to the tailings (Table 4), derived from the partial pyrolysis of 
biomass and carbonates in the ash, as well as the generation of pyrogenic 
C during the mineralization of OC to IC in pyrolysis (Amoakwah et al., 
2020; Dong et al., 2019; Shi et al., 2021). Increase in C with the addition 
of biochar was also observed by Luo et al. (2020) in soils from China. 

3.3. Effects of biochars on as fractionation 

3.3.1. Underground mining tailings 
All fractions of As were influenced by the biochars, with the excep-

tion of the F1 fraction after the addition of B2 (Fig. 1), whose low sol-
ubilization potential is related to the lower levels of OC and P (Table 4), 
resulting in less repulsion of As (Williams et al., 2011; Zheng et al., 
2012). On the other hand, the greater solubilization of As with the 
addition of B1 and B3 is related to the higher contents of ash (Table 1), 
which is rich in carbonates, hydroxides and oxides, and mineral com-
ponents (Beiyuan et al., 2017; Dias et al., 2019). Such conditions 
increased the pH of the tailings (Table 4), favoring the repulsion/solu-
bilization of As oxianions that tend to be easily desorbed (Kim et al., 
2018; Tian et al., 2021; Zhang et al., 2020) and replaced by basic 
components. 

The greater solubility of As promoted by B3 in relation to B1 can be 
explained by the higher levels of P (total and fractions) and OC provided 
by this biochar (Table 4). In this process, the release of As is from the 
replacement of this metalloid by P (phosphate ions) on the surface of the 
tailings particles, due to the chemical similarity between these elements 
and greater solubilization provided by organic components (Beesley 
et al., 2014; Lin et al., 2017; Smith and Naidu, 2009; Yin et al., 2017). 

The application of B1 and B3 promoted the mobilization of As from 
the F2, F3 and F4 fractions to the F1 fraction (Fig. 1). These two biochars 
present higher levels of P (Table 4), which has the potential to replace 
the electrostatically adsorbed As (Beesley et al., 2014; Lin et al., 2017). 
Moreover, the dissolved organic matter resulting from the application of 
these biochars may have caused the dissolution of Fe and Mn oxides 
(responsible for more stable bonds), releasing the precipitated and 
adsorbed As (Beiyuan et al., 2017; Kim et al., 2018, 2019, 2020). On the 
other hand, the dissolution of Fe and Mn oxides may have been lower 
with the application of B2 due to the lower levels of lignin, producing a 
lower content of dissolved organic matter (Dias et al., 2019; Kim et al., 
2020). 

With the addition of B2, the concentrations of As decreased in the F3 
fraction and increased in the F5 fraction (Fig. 1), which is due to the 
dissolution of amorphous minerals (Kim et al., 2018), followed by 
readsorption in the crystalline fraction, in which As presents greater 
stability. The higher concentrations of Fe, Co and Mn after application of 
B2 (Table 3) suggest increased contents of crystalline oxides formed by 
these elements, causing higher adsorption and lower mobility of As, 
which has greater stability when bound to oxides (Yin et al., 2017; Yu 
et al., 2015, 2017). These bonds become stronger and more stable with 
the aging of the tailings, which decreases solubilization (Agrafioti et al., 
2014; Beiyuan et al., 2017; Zhang et al., 2020). B1 was the only biochar 
that reduced the concentrations of As in the most stable fraction (F5) 
(Fig. 1), possibly due to the lower levels of Fe in this biochar (Table 1), 
which may have favored the mobilization of As to less stable fractions. 

3.3.2. Cyanidation mining tailings 
The application of B1, B2 and B3 reduced the concentrations of As by 

15.3, 10.3 and 20.6% in the F2 fraction; 25, 15.3 and 11.1% in the F3 
fraction; and 61.6, 24.9 and 19.7% in the F4 fraction, respectively, in 
relation to the control treatment. Such reductions are directly related to 
the increment in CEC with the addition of these biochars (Table 4), 
which increased the electrostatic repulsion of As and favored the 
mobilization of this metalloid (Lomaglio et al., 2017; Tian et al., 2021; 
Zhang et al., 2020). 

Table 2 
Elemental composition of mining wastes before application of biochars.  

Element Mining waste 

Underground mining tailings Cyanidation mining tailings 

Fe (g kg− 1) 109.00 ± 2.40 70.20 ± 1.54 
Al (mg kg− 1) 8400.00 ± 453.60 6500.00 ± 351.00 
As (mg kg− 1) 3000.00 ± 162.00 1600.00 ± 86.40 
Ca (mg kg− 1) 1800.00 ± 97.20 4300.00 ± 232.20 
Co (mg kg− 1) 51.00 ± 1.12 49.50 ± 1.09 
Cu (mg kg− 1) 215.00 ± 4.73 83.10 ± 1.83 
K (mg kg− 1) 800.00 ± 12.40 500.00 ± 16.50 
Mg (mg kg− 1) 1700.00 ± 91.80 3200.00 ± 172.80 
Mn (mg kg− 1) 1140.00 ± 61.56 789.00 ± 42.61 
P (mg kg− 1) 330.00 ± 10.89 284.00 ± 6.25 
S (mg kg− 1) 100.00 ± 2.20 200.00 ± 6.60 
Zn (mg kg− 1) 76.00 ± 1.67 48.00 ± 1.06  
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The decrease of As concentrations in the F3 and F4 fractions (Fig. 1) 
with the application of all biochars, especially B1, may be related to the 
reductive dissolution of Fe and Mn in oxides, caused by the increment in 
OC, which was more pronounced with the addition of B1 (Table 4) and 
may have led to the solubilization (Beiyuan et al., 2017; Kim et al., 2018; 
Wang et al., 2017) and mobilization of As for both less stable (F1 frac-
tion) and more stable (F5 fraction) forms. 

The concentrations of As increased in the F5 fraction, corresponding 
to 38.6, 12.6 and 4% after application of B1, B2 and B3, respectively 
(Fig. 1). The greater percentage with the addition of B1 is related to the 
higher concentrations of S, Fe, Ca, Cu and Mn (Table 3), suggesting that 
greater contents of sulfide compounds tend to favor more stable chem-
ical bonds between As and sulfides (Drahota et al., 2014; Wang et al., 
2015). The stabilization of As with the application of biochar was also 
observed by Luo et al. (2020) in soils from China, as well as by Zhang 
et al. (2020) in sediments from the same country. 

3.4. Multivariate analyzes and Pearson’s correlation 

In the underground mining tailings, the PCA revealed that the first 
two principal components (PC) explained 97.2% of the total data vari-
ation, with 82.5% explained by PC1 and 14.7% by PC2 (Fig. 2). PC1 was 
positively dominated by the ash content, total P and fractions, and the 
F1 fraction of As, indicating that this metalloid is influenced by soluble 
components (ash) and that there is competition for adsorption sites with 
phosphate ions, in addition to the dominance of the properties of B3, 
which promoted greater solubilization of As. Moreover, PC1 was nega-
tively related to CEC, pH, TC and S of B1 and B2, and the F2, F3 and F4 
fractions of As. PC2, in turn, was positively dominated by the F5 fraction 
of As and the contents of S and Fe from biochars, as well as negatively 
dominated by the concentration of Mn in the biochars, demonstrating 
the effect of mineral components (Fe, Mn and S) on the retention of As in 
less available fractions. 

Significant Pearson’s correlations (p < 0.05) were found between the 
fractions of As and the properties of biochars in the underground mining 

tailings (Table 1S), which supports that the addition of these materials 
modified the bioavailability of the metalloid. The F1 fraction of As 
showed a positive correlation with ash, Ca, Al, Mn, Mg and P fractions of 
biochars; the F2, F3 and F4 fractions of As presented negative correla-
tions with ash, Ca, Al, Mn, Mg and P fractions of the biochars; and the F5 
fraction of As showed positive correlations with the levels of Fe and Ca 
in the biochars (Table 1S). Such results indicate that the biochar prop-
erties (ash, Ca, Al, Mn, Mg and fractions of P) were essential for the 
solubilization of As from the most stable fractions (Fig. 1). 

The first two principal components accounted for 95.6% of the data 
variation in the cyanidation mining tailings (Fig. 2), with 77.4% 
explained by PC1 and 18.2% explained by PC2. PC1 was positively 
dominated by N, ash, total P and fractions, in addition to the properties 
of B3, and negatively dominated by CEC, pH, TC, S, and F1 and F2 
fractions of As from B1 and B2, due to the greater solubilization caused 
by the addition of these biochars to the tailings (Fig. 1). PC2 was posi-
tively dominated by the F3 and F4 fractions of As and the content of Fe 
from biochars, and negatively dominated by the F5 fraction of As and 
the concentration of Mn in the biochars, indicating the influence of 
mineral components on the retention of As in less reactive fractions. 

In the cyanidation mining tailings, the F1 and F2 fractions of As 
showed negative correlations with ash, Fe, Ca, Al, Mn, Mg and P frac-
tions, as well as positive correlations with pH, CEC and TC of biochars; 
the F3 and F4 fractions of As showed positive correlations with O, Fe and 
Ca of biochars; and the F5 fraction of As had negative correlations with 
Fe, Ca and Al of biochars (Table 1S). These results demonstrate that the 
changes promoted by the biochar properties (pH, CEC and TC) 
contributed to the solubilization of As, and that the mineral content (Fe, 
Ca, Al, Mn and Mg) led to the accumulation of As in less reactive frac-
tions in these materials (Fig. 1). 

The models proposed to estimate the bioavailability of As were: i) 
properties of biochars; ii) properties of mining tailings; and iii) inter-
action between properties of biochars and mining tailings. The ANOVA 
revealed that there are no significant differences between the models 
(Table 2S). The model represented by the interaction between materials 

Table 3 
Elemental composition of mining wastes after application of açaí seed (B1), Brazil nut shell (B2) and palm kernel cake (B3) biochars.  

Element Underground mining tailings Cyanidation mining tailings 

B1 B2 B3 B1 B2 B3 

Fe (g kg− 1) 97.60 ± 2.24 100.50 ± 2.31 98.40 ± 2.26 72.10 ± 1.66 68.50 ± 1.58 69.80 ± 1.61 
Al (mg kg− 1) 7300.00 ± 379.60 6000.00 ± 312.00 6400.00 ± 332.80 6200.00 ± 322.40 5900.00 ± 306.80 5900.00 ± 306.80 
Ca (mg kg− 1) 1600.00 ± 83.20 1700.00 ± 88.40 1700.00 ± 76.35 4500.00 ± 234.00 4300.00 ± 223.60 4100.00 ± 213.20 
Co (mg kg− 1) 53.60 ± 1.23 53.90 ± 1.54 50.20 ± 1.15 43.50 ± 1.00 50.90 ± 1.17 48.00 ± 1.10 
Cu (mg kg− 1) 189.50 ± 4.36 198.50 ± 4.57 102.50 ± 2.36 88.10 ± 2.03 85.70 ± 1.97 70.50 ± 1.62 
K (mg kg− 1) 1000.00 ± 52.00 600.00 ± 21.34 900.00 ± 46.80 800.00 ± 41.60 600.00 ± 31.20 800.00 ± 41.60 
Mg (mg kg− 1) 1400.00 ± 72.80 1400.00 ± 68.40 1400.00 ± 72.80 3400.00 ± 176.80 3100.00 ± 161.20 2800.00 ± 145.60 
Mn (mg kg− 1) 1120.00 ± 58.24 1160.00 ± 60.32 1100.00 ± 57.20 800.00 ± 41.60 750.00 ± 39.00 742.00 ± 38.58 
P (mg kg− 1) 380.00 ± 13.51 330.00 ± 11.73 650.00 ± 33.80 360.00 ± 12.80 290.00 ± 10.31 680.00 ± 35.36 
S (mg kg− 1) 200.00 ± 7.11 200.00 ± 4.60 200.00 ± 5.54 500.00 ± 26.00 200.00 ± 4.12 200.00 ± 7.11 
Zn (mg kg− 1) 69.00 ± 1.59 72.00 ± 1.66 70.00 ± 1.61 50.00 ± 1.15 47.00 ± 1.08 50.00 ± 1.15  

Table 4 
Properties of mining wastes after application of açaí seed (B1), Brazil nut shell (B2) and palm kernel cake (B3) biochars.  

Property Underground mining tailings Cyanidation mining tailings 

Control B1 B2 B3 Control B1 B2 B3 

pH (in water) 7.07 ± 0.16 7.25 ± 0.27 7.19 ± 0.27 7.33 ± 0.18 8.33 ± 0.21 8.41 ± 0.19 8.27 ± 0.31 8.15 ± 0.28 
CECa (cmolc kg− 1) 37.86 ± 0.95 129.60 ± 5.73 45.00 ± 1.77 47.12 ± 1.86 31.24 ± 0.78 50.77 ± 2.00 46.71 ± 1.84 44.41 ± 1.11 
Soluble P (mg kg− 1) 3.61 ± 0.09 17.44 ± 0.69 7.96 ± 0.24 90.17 ± 4.46 6.38 ± 0.19 16.57 ± 0.65 8.79 ± 0.27 80.02 ± 3.96 
Labile P (mg kg− 1) 12.93 ± 0.29 24.73 ± 0.88 13.10 ± 0.29 93.48 ± 3.72 17.69 ± 0.40 37.57 ± 1.33 22.87 ± 0.65 142.8 ± 5.68 
Adsorbed P (mg kg− 1) 64.90 ± 1.66 85.61 ± 3.06 50.80 ± 1.30 111.70 ± 3.89 55.38 ± 1.42 63.25 ± 1.62 62.42 ± 1.59 108.4 ± 3.88 
Mineral P (mg kg− 1) 6.09 ± 0.14 11.89 ± 0.27 7.75 ± 0.17 51.65 ± 2.46 19.14 ± 0.59 28.46 ± 1.36 18.52 ± 0.57 113.8 ± 5.42 
Organic C (mg kg− 1) 16.50 ± 0.39 42.50 ± 1.77 38.60 ± 1.61 46.40 ± 1.93 12.2 ± 0.29 41.3 ± 1.72 32.2 ± 1.02 38.5 ± 1.60 
Inorganic C (mg kg− 1) 4.60 ± 1.36 4.10 ± 1.21 4.30 ± 1.27 2.70 ± 0.06 20.1 ± 0.98 17.7 ± 0.86 21.1 ± 1.03 17.2 ± 0.84 
Total C (mg kg− 1) 21.10 ± 0.54 46.60 ± 2.31 42.90 ± 2.13 49.10 ± 2.44 32.3 ± 1.02 59 ± 2.93 53.3 ± 2.65 55.7 ± 2.77  

a Cation exchange capacity. 
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showed higher adjustment values (adjusted R2) and lower AIC 
(Table 3S). Therefore, this model was selected as the most representative 
for multiple linear regression. 

The multiple linear regression (Table 4S) revealed that the properties 
most related to the bioavailability of As were: adsorbed As, total P and 
fractions (soluble, adsorbed and mineral), and organic carbon in the 
mining tailings; and ash, CEC, N and P fractions (soluble, adsorbed and 
mineral) in the biochars. Based on the values of NRMSE and R2 (Fig. 3S), 
it is possible to state that the selected model was appropriate for pre-
dicting the As bioavailability. All characteristics included in the model 
(p < 0.05) indicate the direct influence of ash (rich in P) and organic 
compounds (OC and N) in the solubilization of As from stable fractions 
(Kim et al., 2018, 2020) and, consequently, greater bioavailability. 
These results suggest that the multiple linear regression can be an 
important tool, due to the direct influence of the materials on the 
bioavailability of contaminants (O’Connor et al., 2018; Peijnenburg, 
2020). 

3.5. Bioavailability and environmental risks of as 

The application of biochar decreased the bioavailable concentrations 
of As in both mining tailings, with results ranging from 64.4 to 77.48 mg 
kg− 1 in the underground mining tailings, and from 68.55 to 85.78 mg 
kg− 1 in the cyanidation mining tailings (Fig. 4S). These reductions are 
related to the increase in IC and metal ions such as Al, Fe and Mn (Ta-
bles 3 and 4), which contributed to a greater retention of anions in more 
stable fractions (Wu et al., 2020). The greater bioavailability of As in the 
cyanidation mining tailings may be related to the use of Na cyanide 
solution during gold extraction (Kuyucak and Akcil, 2013), which pro-
motes partial dissolution of Fe, Al and Mn minerals (Rubinos et al., 
2011), releasing As. After dissolution, the metalloid tends to be even 
more desorbed with increasing pH, due to competition with OH− ions (Li 
et al., 2017; Vodyanitskii, 2006; Xue et al., 2019; Yin et al., 2015). 

The bioavailable concentrations of As were incorporated into the 
assessment of environmental risks to reveal the actual damage of the 
metalloid. In the control treatment, which indicates the conditions in 
which tailings are deposited, the PERIm values were 376.12 in the un-
derground mining tailings and 416.39 in the cyanidation mining tailings 
(Fig. 3). These results were lower than those obtained by Souza Neto 
et al. (2020), who studied the environmental risk of As in the same lo-
cality, based on pseudo total concentrations, and observed PERI values 
of 14,131 in the underground mining tailings and 8951 in the cyani-
dation mining tailings, indicating possible overestimation of risks. 

The application of B3 in the underground mining tailings was the 
only treatment that promoted a change in the class of risk according to 
the classification proposed by Hakanson (1980) for PERI values, modi-
fying the ecological risk from very high to high (Fig. 3). However, the 
ecological risk was significantly reduced in all treatments after the 
application of biochars (p < 0.05), with reductions of 5.51, 8.53 and 
16.88% in the underground mining tailings, and 13.60, 8.69 and 20.08% 
in the cyanidation mining tailings, in response to the application of B1, 
B2 and B3, respectively. 

The adoption of bioavailability can be an important tool for the 
proper assessment of As risk, considering that high bioavailable levels 
indicate higher mobility and, consequently, greater risk to the envi-
ronment (Dong et al., 2020; Silva Júnior et al., 2019). In this study, the 
application of biochars increased the concentrations of As in more stable 
fractions and decreased the bioavailable level, which is a highly bene-
ficial process for the environment. Moreover, the reduction of the 
bioavailable fraction and the ecological risk may also imply a reduction 
in the risk to human health, due to lower As entry into the food chain. 

The application of biochar can reduce soil density (Cao et al., 2014) 
and increase water infiltration into the soil (with increasing porosity), 
which is fundamental to reduce the dispersion of PTEs (Cao et al., 2014; 
Chen et al., 2016). On the other hand, biochar can confer less resistance 
to the soil in relation to external agents, especially in areas of accentu-
ated relief, which are more susceptible to losses by erosion. In these 
cases, an interesting alternative is the application of biochar together 
with limestone, which has the potential to improve soil resistance and 
stability and, consequently, reduce losses by erosive agents (Wang et al., 
2020b), protecting water resources for human consumption (Koley, 
2021). The adoption of these practices can also promote improvements 
in soil conditions for plant growth, contributing to increased plant cover 
and slope stability (Chen et al., 2016). 

To better assess the effects of biochars on the environment, it is 
essential to conduct the new studies involving the bioavailability of As. 
The application of different rates of biochars under field conditions, 
including an expressive number of samples and areas, and in different 
positions in the relief, aiming to have a greater representation of the 
bioavailable concentrations, to estimate models that can accurately 
predict the environmental risks of the element (Jia et al., 2021). It would 
also be interesting to collect organisms (such as plants and fish) to 
analyze the As content in the issue, aiming to know the content absorbed 
and bioaccumulated from the environment (Lima et al., 2022; Ray et al., 

Fig. 1. Concentrations of As in readily-soluble (F1), adsorbed (F2), amorphous 
and poorly-crystalline arsenates, oxides and hydroxosulfates of Fe (F3), well- 
crystalline arsenates, oxides, and hydroxosulfates of Fe (F4), and linked to 
sulfides/arsenides (F5) fractions, in underground mining tailings (A) and cya-
nidation mining tailings (B) after application of açaí seed (B1), Brazil nut shell 
(B2), and palm kernel cake (B3) biochars. Different letters indicate significant 
difference between treatments by the Tukey test (p < 0.05). 
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2021), which could reinforce the role of biochar in reducing the risks to 
the environment and human health from As exposure. 

4. Conclusions 

The chemical properties of biochars have a direct influence on the 
solubility of As in the mining tailings, with emphasis on the levels of P 
and mineral components, which mobilize the metalloid to less 
bioavailable fractions. The multivariate (PCA and multiple regression) 
and Pearson’s correlation analyzes demonstrate that the interaction of 

biochars with mining tailings is the key to understanding the reduced 
bioavailability of As. All studied biochars decreased the bioavailable 
concentrations of As, following the sequence palm kernel cake > Brazil 
nut shell > açaí seed in both tailings, reaching reductions of up to 13 mg 
kg− 1 (underground mining tailings) and 17 mg kg− 1 (cyanidation min-
ing tailings). Consequently, the environmental risks decreased between 
6 and 17% in the underground mining tailings and between 9 and 20% 
in the cyanidation mining tailings. The incorporation of the bioavailable 
concentrations in risk assessments is an alternative for recommending 
the application of biochars in mining tailings contaminated by As, based 
on reliable indicators. Our results indicate that the tested biochars can 
contribute to the mitigation of the impacts caused by As, especially if 
applied considering the relief conditions and in association with tech-
niques that improve efficiency. In addition, our findings may support 
new studies focused on the remediation of areas contaminated by As, 
including the use of new agro-industrial residues and application rates, 
aiming to reduce the risks to the ecosystem and human health. 
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