
Journal of Environmental Management 267 (2020) 110644

Available online 1 May 2020
0301-4797/© 2020 Elsevier Ltd. All rights reserved.

Research article 

Chemical fractionation and bioaccessibility of potentially toxic elements in 
area of artisanal gold mining in the Amazon 

Wendel Valter da Silveira Pereira a,*, Renato Alves Teixeira b, Edna Santos de Souza b, 
Adriele Laena Ferreira de Moraes a, Willison Eduardo Oliveira Campos c, 
Cristine Bastos do Amarante c, Gabriel Caixeta Martins d, Antonio Rodrigues Fernandes a 

a Federal Rural University of Amazon, Bel�em, PA, Brazil 
b Federal University of Southern and Southeastern Par�a, Marab�a, PA, Brazil 
c Emílio Goeldi Museum of Par�a, Bel�em, PA, Brazil 
d Vale Institute of Technology – Sustainable Development, Bel�em, PA, Brazil   

A R T I C L E  I N F O   

Keywords: 
Serra Pelada 
Sequential extraction 
Bioavailability of metals 
Environmental pollution 

A B S T R A C T   

Artisanal mining may have modified the mobility, bioavailability and bioaccessibility of potentially toxic ele-
ments (PTEs) in the Serra Pelada gold mine, eastern Amazon, Brazil, which has not yet been studied. The ob-
jectives were to perform chemical fractionation of barium (Ba), chromium (Cr), copper (Cu), nickel (Ni), lead 
(Pb), and zinc (Zn), and to determine the bioaccessibility of these elements in soils and mining wastes collected in 
agriculture, forest, mining, and urban areas from the influence zone of the Serra Pelada gold mine. Pseudo total 
concentrations were obtained by acid digestion, chemical fractionation was performed using the Bureau Com-
munity of Reference (BCR) sequential extraction, oral bioaccessibility was obtained by the Simple Bio-
accessibility Extraction Test (SBET) and lung bioaccessibility was obtained through Gamble’s solution. The 
pseudo total concentrations indicated contamination by Ba, Cu and Ni. The sequential extraction revealed the 
predominance of all elements in the residual fraction. However, Ba is in high concentrations in the greater 
mobility forms, ranging from 166.36 to 1379.58 mg kg� 1. Regardless of the area, Cr and Cu are more oral 
bioaccessible in the intestinal phase, and Zn in the gastric phase. Ba, Cr and Zn are not lung bioaccessible, while 
Cu, Ni and Pb are bioaccessible via inhalation. The PTEs studied deserve attention not only due to the high 
pseudo total concentrations found (which indicate potential risk), but also the concentrations in high mobility 
forms and bioaccessible fractions, especially in the areas of greatest anthropogenic occupation.   

1. Introduction 

Artisanal gold mining is one of the main causes of increased poten-
tially toxic elements (PTEs) concentrations in the soil (Souza et al., 2017; 
Teixeira et al., 2019), especially in the Amazon, where this activity has 
been practiced since the 1950s (Balzino et al., 2015; Lobo et al., 2016). 
Despite the contribution to the local economy, artisanal mining repre-
sents a serious threat to the biodiversity and environmental quality of 
the region (Sevilla-Perea et al., 2016; Souza et al., 2019; Teixeira et al., 
2019). It is because the exploration is generally performed in a rudi-
mentary manner (Pavilonis et al., 2017), producing PTE-rich residues, 
which are exposed to weathering on the soil surface and may suffer 

dispersion to distant areas (Puga et al., 2016; Quinton and Catt, 2007), 
leading to pollution even long after exploration (Liu et al., 2018; Yan 
et al., 2015). 

PTEs may cause high environmental and human health risks (Anto-
niadis et al., 2017; Cao et al., 2015), which is associated with their 
persistence and transferability in the food chain (Gall et al., 2015; 
Subida et al., 2013). Elements such as copper (Cu) and zinc (Zn) are 
essential to humans, but they become toxic when found in high con-
centrations. On the other hand, barium (Ba), chromium (Cr), lead (Pb), 
and nickel (Ni) have no biological function in the human body and may 
induce serious health problems (Abbas et al., 2017; Abbasi et al., 2016). 
The ingestion of these elements in high levels can cause damage as 
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kidney dysfunction, cardiovascular problems, respiratory diseases, skin 
lesions, bone and endocrine disorders and reduced immunological de-
fenses (J€arup, 2003). In addition, the chronic inhalation of these metals 
can lead to respiratory diseases, neuropathies, increased blood pressure, 
anemia and kidney damage (Liu et al., 2019). 

The total concentration of PTEs may be not a good predictor of the 
environmental risk, because it does not inform about the mobility and 
bioavailability of these contaminants (Adamo et al., 2018; Alan and 
Kara, 2019; Gope et al., 2017; Nkinahamira et al., 2019). On the con-
trary, sequential extractions identify the main fractions in which PTEs 
are associated (Gabarr�on et al., 2019) and allow to determine the cur-
rent and potential risk related to high concentrations of these elements 
(Matong et al., 2016; Shaheen et al., 2017; Shaheen and Rinklebe, 
2014). One of the main sequential extraction methods is the Bureau 
Community of Reference (BCR) protocol, which allows metal fraction-
ation in four main fractions: i) exchangeable, soluble in water or weakly 
linked with carbonates; ii) reducible (metal linked to iron and manga-
nese oxides); iii) oxidable (metal bound to organic matter and sulfides); 
and iv) residual, that represents the metal fraction strongly bound to the 
crystalline structures of minerals (Mendoza et al., 2017). 

Studies about PTEs bioaccessible concentrations, which assess the 
fraction of these contaminants that is available for absorption when 
dissolved in gastrointestinal and lung fluids (Ettler et al., 2012; Guney 
et al., 2016; Hu et al., 2013; Liu et al., 2017; Z�adrapov�a et al., 2019; Zhu 
et al., 2016), have also been indicated as important tools in risk as-
sessments, because they reduce the dependence on total PTE concen-
trations and improve the accuracy of these studies (Palmer et al., 2015). 
Recently, greater attention has been given to the bioaccessibility of PTEs 
in mining areas, aiming to assess the risks of human exposure to waste 
piles (Drahota et al., 2018; Ettler et al., 2019; Meunier et al., 2010; 
Thomas et al., 2018), considering that only part of the total concentra-
tion is metabolized in the human body, where these elements may enter 
through ingestion, inhalation and skin absorption (Guney et al., 2017; Li 
et al., 2013; Luo et al., 2012; Mendoza et al., 2017). 

The Serra Pelada gold mine, eastern Amazon, was one of the largest 
open pit gold mines in the world. Serra Pelada is naturally rich in PTEs 
(Berni et al., 2014) and mining activities may have altered the mobility, 
bioavailability and bioaccessibility of these elements in the area, which 
has not yet been studied. This information is indispensable to study 
precisely the environmental and human health risks related to PTEs in 
mining areas and their influence zones. The objectives were to perform 
chemical fractionation of Ba, Cr, Cu, Ni, Pb, and Zn, and to determine the 
oral and lung bioaccessible fractions of these PTEs in agriculture, forest, 
mining, and urban areas in the influence zone of the Serra Pelada gold 
mine, Brazil. 

2. Materials and methods 

2.1. Study site 

The Serra Pelada gold mine occupied a 300 m by 400 m area over a 
depth of 130 m, located in the Curion�opolis municipality (5� 56 050.54300
S and 49� 380 44.795” W), state of Par�a, eastern Amazon. This region 
presents a tropical monsoon climate according to the K€oppen classifi-
cation, with an average annual temperature of 26 �C and average rainfall 
of 2000 mm (Souza et al., 2017; Teixeira et al., 2019). 

Serra Pelada is located in the Caraj�as Mineral Province, southeastern 
region of the Amazonian craton. This area has large mineral reserves and 
includes iron formations and clastic sedimentary, pyroclastic, basic 
volcanic and metamorphic felsic rocks (Souza et al., 2017; Torresi et al., 
2012). In this region, there are minerals such as quartz, hematite, 
kaolinite, goethite, chlorite, magnetite, pyrite, chalcopyrite, arsenopy-
rite, covelite and a series of sulfides (Cabral et al., 2002; Moroni et al., 
2001; Souza et al., 2017; Tallarico et al., 2000), and gold occurs asso-
ciated with palladium and platinum on surface and bound to sulfur, 
selenium and arsenic in depth (Berni et al., 2014; Teixeira et al., 2019). 

Mining activities in Serra Pelada started in the 1980s, attracting 
thousands of workers from different parts of the world (Veiga and 
Hinton, 2002) and contributing significantly to the national gold pro-
duction (Teixeira et al., 2019). The Brazilian government officially 
closed the mining activities by flooding the open pit mine in 1989 (Berni 
et al., 2014). Currently, about 6000 people live in the vicinity of the old 
mine, in area comprising approximately 21 ha, where gold mining still 
occurs through excavation of new sites and reprocessing of mine wastes. 
Millions of residues tons with high PTEs concentrations are deposited 
unprotected on the surface of the soil near the pit (Teixeira et al., 2018), 
occupying an area larger than 10 ha at a height exceeding 10 m (Souza 
et al., 2017). 

2.2. Sampling and characterization of soils and mine wastes 

The collection of composite samples (each consisting of three sub-
samples) of soils and mining wastes was performed in the 0.0–0.2 m 
layer using a stainless steel Dutch auger in order to avoid sample 
contamination. Twenty-seven samples were collected: ten in mining 
tailings deposit areas (pit margin and tailings piles), ten in urban areas, 
five in agriculture areas and two in forest areas (Fig. 1). These samples 
were air dried, sieved (Ø ¼ 2.0 mm), homogenized, and stored in 
polypropylene containers for chemical, physical and mineralogical 
characterization. 

The soil fertility characterization followed the methodology 
described by Teixeira et al. (2017). All analyzes were performed in 
triplicate and, for each battery, a blank sample was inserted. The sample 
pH was measured in a sample:water suspension (1:2.5). Exchangeable 
Ca2þ, Mg2þ and Al3þ were extracted with 1 mol L� 1 KCl. Al3þ was 
quantified by titration with 0.025 mol NaOH, and Ca2þ and Mg2þ were 
quantified by complexometry with 0.0125 mol L� 1 EDTA. Available K 
was extracted with Mehlich I solution (0.05 mol L� 1 HCl þ 0.0125 mol 
L� 1 H2SO4) and quantified by flame photometry. Organic carbon (OC) 
was quantified by digestion with potassium dichromate (0.0667 mol L� 1 

K2Cr2O7) in sulfuric acid, and organic matter (OM) was found by 
multiplying the OC by 1.72. Potential acidity (HþAl) was determined 
with calcium acetate [Ca(C2H3O2)2] buffered at pH 7.0. The results of 
the exchange complex were used to calculate cation exchange capacity 
(CEC), sum of bases (SB), base saturation (V%) and aluminium satura-
tion (m%). 

Particle size was determined by the pipette method. Pre-treatment of 
organic matter and Fe and Al oxides/hydroxides was performed with 
hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate, 
respectively, followed by chemical dispersion with NaOH 1 mol L� 1 

and physical dispersion by agitation of the flasks during 16 h on a 
shaking table (120 rpm). Clay fraction was separated by sedimentation, 
sand fraction by sieving and silt fraction was calculated from the dif-
ference (Gee and Bauder, 1986). 

The mineralogical analysis was performed using a PANalytical X’Pert 
Pro MPD (PW 3040/60) diffractometer equipped with an X-ray ceramic 
anode Cu (Kα1 ¼ 1.540598 Å) and Ni Kβ filter. The scan ranged from 4� a 
95� 2θ with time/step of 30 s (step size of 0.02� 2 θ). The X-ray dif-
fractograms were processed using the software X’Pert HighScore Plus 
(v.3.0, PANalytical). 

Pseudo total concentrations of PTEs and iron (used for calculating 
contamination indices) were extracted according to EPA 3051A (USEPA, 
2007). For this purpose, 9 mL of HNO3 and 3 mL of HCl were added in 
0.5 g of powdered soil (Ø ¼ 100 mesh), followed by digestion in a mi-
crowave oven. In order to ensure the quality of the results, the samples 
were analyzed in triplicate, and a blank sample and a certified sample of 
reference material (144 ERM-CC141) were included for each battery. 
The recovery rate ranged from 94 to 98%. 

2.3. Contamination, chemical fractionation and bioaccessibility 

Enrichment factor (EF), geoaccumulation index (Igeo), 
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contamination factor (CF) and potential ecological risk index (PERI) 
were calculated to study contamination from pseudo total PTEs con-
centrations. Chemical fractionation was obtained by the Bureau Com-
munity of Reference (BCR) sequential extraction, in which four fractions 
are considered: exchangeable, soluble in water or weakly linked to 
carbonates (F1); reducible or linked to oxides (F2); oxidable or associ-
ated with organic matter and sulfides (F3); and residual (F4), which 
represents the fraction associated with the crystalline structures of 
minerals. Risk assessment code (RAC), individual contamination factor 
(ICF), global contamination factor (GCF) and mobility factor (MF) were 
calculated to assess contamination from PTEs concentrations found in 
the chemical fractions. Oral bioaccessibility was obtained according to 
the Simple Bioaccessibility Extraction Test (SBET), which allows to 
simulate the gastric and intestinal phases of human digestion, while lung 
bioaccessibility was obtained using Gamble’s solution. More informa-
tion about references, equations and interpretation of the results may be 
seen in the supplementary material. 

2.4. Quantification and statistical analysis 

Pseudo total concentrations of Ba, Cr, Cu, Ni, Pb, and Zn, as well as 
concentrations in chemical forms and bioaccessible fractions of these 
elements in soils and mining residues were quantified by flame atomic 
absorption spectroscopy (FAAS). The results were submitted to 
descriptive statistical analysis, using Statistica computer software, 
version 10.0 (StatSoft Inc., 2011). 

3. Results and discussion 

3.1. Characterization of soils and mining wastes 

The pH varied between 5.97 and 6.6 (Table 1), that is considered 
high in relation to those generally found in soils in the state of Par�a, 
which vary between 3.7 and 5.0 (Souza et al., 2018). The soil in the 
forest area has medium acidity, while the agriculture, urban and mining 
areas have low acidity soils (Venegas et al., 1999). The low acidity of the 
soils in the areas of greatest anthropic influence may be explained by the 
dissolution of carbonate minerals (Tallarico et al., 2000), which con-
sumes Hþ ions and generates aqueous carbonate species and divalent 
cations, increasing soil pH (Lindsay et al., 2015). On the other hand, in 
the forest area, the lower pH may be related to the litter deposition and 
decomposition, which release organic acids and, therefore, Hþ protons 
that acidify soils. 

The OM levels were medium in the forest, urban and mining areas, 
and high in the area of agriculture (Venegas et al., 1999). In the agri-
culture area, which had an OM content equal to 41.46 mg kg� 1, the use 
of bovine manure and organic residues in the vegetable and fruit culti-
vation is frequent, which contributes to an increase in the OM content. 
In the mining area, with 21.55 mg kg� 1, the occurrence of plants around 
the mine pit, often in the tailings piles, may have contributed to the 
biological activity and increase in the OM content. Nevertheless, the 
mining area has the lowest OM content among the studied areas, which 
is associated with practices such as removal of vegetation cover and 
residues washing, that accelerate decomposition (Teixeira et al., 2019). 

Fig. 1. Location map of sampling points.  
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The SB was medium in the mining area (24.78 mmolc dm� 3), high in 
the forest (36.12 mmolc dm� 3) and urban (48.36 mmolc dm� 3) areas, 
and very high in the agriculture area (68.57 mmolc dm� 3) (Venegas 
et al., 1999). In the mining area, despite the higher pH, the lowest SB 
was found, mainly due to the lack of soil cover, that favors losses by 
erosion and leaching (Fernandes et al., 2018). Otherwise, the higher 
concentrations of exchangeable bases in the forest, urban and agricul-
ture areas may be explained by the higher organic matter content, which 
improves soil CEC, especially in tropical regions (Ramos et al., 2018). 
The soil CEC was classified as medium in the forest, urban and agri-
culture areas, and low in the mining area (Venegas et al., 1999). 

The concentrations of Al3þ were medium in the agriculture, urban 
and mining areas, and high in the forest area, while the saturation by 
this element was very low in the agriculture area, low in the forest and 
urban areas, and medium in the mining area, according to the classifi-
cation proposed by Venegas et al. (1999). The lower concentrations of 
Al3þ in the areas of greatest anthropogenic influence (8.0, 7.6 and 7.85 
mmolc dm� 3 in agriculture, mining and urban areas, respectively) can be 
explained by the higher pH of the soils, because in these conditions Al 
precipitates in the hydroxide form (Tchiofo Lontsi et al., 2019). The 
potential acidity, which followed the same trend as Al3þ, was classified 
as very low in the mineral exploration area, medium in the urban area 
and high in the forest and agriculture areas (Venegas et al., 1999). 

Regardless of the area, the soil granulometry was classified as sandy 
loam according to the Brazilian Soil Classification System (Santos et al., 
2018). In the mining area, which had the highest sand content (577.95 g 
dm� 3) among the studied areas, the granulometry is related to the 
characteristics of the exploration residues, which are constituted by 
processed rocks. 

The agriculture, forest and urban areas had sand content equal to 
543.11, 492.65 and 513.76 g dm� 3, respectively. These results are in 
accordance with the predominant granulometry of the eastern Amazon 

soils (Fernandes et al., 2018). The highest sand content is related to the 
quartz-rich source material (Cabral et al., 2002; Souza et al., 2018), 
which was evidenced in the mineralogical analysis (Fig. 1S). Knowledge 
of soil granulometry in these areas is essential, given the direct influence 
of particle size on the metal sorption and availability (Souza et al., 2017; 
Silva Júnior et al., 2019). 

3.2. Pseudo total concentrations 

The pseudo total concentrations of PTEs follow the order Ba > Cu >
Pb > Cr > Zn > Ni in the agriculture and urban areas, Cr > Ba > Pb > Zn 
> Cu > Ni in the forest area, and Ba > Cu > Zn > Pb > Ni > Cr in the 
mineral exploration area (Table 2). Regardless of the area, all PTEs 
studied are in pseudo total concentrations extremely higher than the 
quality reference values (QRV) established for soils in the state of Par�a 
(Fernandes et al., 2018), with emphasis on Ba, whose concentrations are 
28, 31 and 147 times higher than the QRV (36 mg kg� 1) in the urban, 
agriculture and mining areas, respectively. 

Ba occurs commonly associated with minerals such as micas and K- 
feldspars in the soil (Cappuyns, 2018), which were found in the studied 
areas (Fig. 1S). Concentrations of PTEs above the QRV indicate the 
requirement for monitoring due to the possible risks to environment and 
human health (Souza et al., 2017), especially in the areas of greatest 
anthropogenic influence, where these elements are in direct contact 
with the population. 

With the exception of Zn in the agriculture, urban and mining areas, 
all elements studied are in concentrations above the prevention values 
(PV) established for soils by the Brazilian National Environment Council 
(CONAMA). The PV refers to the limit concentration of a certain sub-
stance that allows the maintenance of the main soil functions (CON-
AMA, 2009). Concentrations of Ba, Cu and Ni are above the 
investigation values (IV) for agriculture and urban areas, and Cr and Pb 

Table 1 
Chemical and physical attributes of soils and mining wastes from the influence area of the Serra Pelada gold mine, Brazil.  

Analysis Area 

Agriculture Forest Mining Urban 

Alþ3 (mmolc dm� 3) 8.00 � 4.1 10.34 � 7.34 7.60 � 5.94 7.85 � 5.06 
Caþ2 (mmolc dm� 3) 45.10 � 19.74 23.75 � 4.25 14.20 � 10.45 29.25 � 19.36 
K (mmolc dm� 3) 3.97 � 4.13 2.12 � 1.13 0.88 � 0.70 3.26 � 2.79 
Mgþ2 (mmolc dm� 3) 19.50 � 13.83 10.25 � 2.25 9.70 � 7.04 15.85 � 13.08 
SB (mmolc dm� 3)a 68.57 � 30.0 36.12 � 7.63 24.78 � 17.87 48.36 � 25.54 
CEC (mmolc dm� 3)b 76.57 � 31.59 46.46 � 0.29 32.38 � 21.82 56.21 � 28.34 
HþAl (mmolc dm� 3) 50.99 � 26.64 55.28 � 33.00 8.91 � 7.30 31.43 � 13.85 
V (%)c 61.02 � 11.68 45.33 � 20.93 60.69 � 31.75 57.13 � 19.74 
m (%)d 12.62 � 7.44 22.35 � 15.94 36.24 � 29.19 16.01 � 13.07 
Organic matter (g dm� 3) 41.46 � 28.46 32.24 � 30.96 21.55 � 17.39 30.94 � 16.07 
pH (H2O) 6.27 � 0.44 5.97 � 0.37 6.60 � 0.51 6.29 � 0.53 
Clay (g dm� 3) 313.69 � 158.30 329.37 � 70.96 217.97 � 91.09 314.27 � 119.89 
Sand (g dm� 3) 543.11 � 183.78 492.65 � 80.58 577.95 � 118.35 513.76 � 126.07 
Silt (g dm� 3) 143.20 � 36.70 177.97 � 9.62 204.08 � 160.75 171.97 � 68.08  

a Sum of bases. 
b Cation exchange capacity. 
c Base saturation. 
d Aluminium saturation. 

Table 2 
Pseudo total concentrations of Ba, Cr, Cu, Ni, Pb, and Zn in soils and mining wastes from the influence area of the Serra Pelada gold mine, Brazil.  

Element Area 

Agriculture Forest Mining Urban 

Ba (mg kg� 1) 1126.92 � 725.42 384.55 � 21.00 5312.65 � 8807.1 1024.00 � 489.34 
Cr (mg kg� 1) 239.37 � 105.62 418.54 � 264.09 82.05 � 52.62 166.83 � 67.22 
Cu (mg kg� 1) 323.80 � 138.76 129.98 � 60.75 266.67 � 107.66 468.21 � 585.03 
Ni (mg kg� 1) 76.47 � 39.01 51.62 � 27.35 126.61 � 69.78 142.00 � 101.02 
Pb (mg kg� 1) 309.93 � 112.31 331.43 � 242.11 168.70 � 69.31 235.51 � 73.75 
Zn (mg kg� 1) 141.54 � 60.12 300.19 � 194.90 207.04 � 99.05 156.08 � 131.45  
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only in agriculture areas. The IV is another guiding value of soil quality 
established by CONAMA, which indicates the concentration of a certain 
substance above which there are potential risks to human health. 

High PTEs concentrations in Serra Pelada are associated with the 
source material of these soils, composed of mafic and ultramafic rocks 
rich in PTEs (Berni et al., 2014; Souza et al., 2017). Excavation and 
crushing of these rocks in the mineral exploration, followed by disposal 
of tailings, contribute with PTEs releases and may cause contamination 
of soil, air, water and plants (Teixeira et al., 2019), putting the health of 
the local population at risk, especially when high concentrations of these 
elements are mobilized for high reactivity forms (Mendoza et al., 2017). 

3.3. Contamination indices 

The mining area has extreme enrichment and high contamination by 
Ba, with EF, Igeo and CF equal to 115.6, 3.2 and 18.82, respectively, as 
well as significant enrichment and moderate contamination by Cu and 
Ni, and moderate enrichment and low contamination by Pb and Zn. In 
the urban area, the enrichment by Ba, Cu and Ni is significant and the 
soils vary from contaminated to moderately contaminated by these el-
ements. The agriculture area showed significant enrichment for Ba and 
moderate for Cu and Ni, with Igeo and CF indicating contaminated to 
moderately contaminated soil. The ecological risk index indicated low 
risk in the agriculture and urban areas and moderate risk in the mining 
area (Table 3). 

The EF, Igeo and CF indicated high contamination and enrichment 
by Ba in the mining area, which is related with the mobilization of the 
parental material rich in Ba (Cabral et al., 2002) in gold exploitation. In 
the urban areas, which are near to the mining areas (Fig. 1), it is com-
mon to reprocess mining wastes (Teixeira et al., 2019), that associated 
with transport through wind and water, may have caused dispersion of 
PTE-rich soil particles, contributing to enrichment by Ba, Cu and Ni in 
these areas. The enrichment for all the studied elements was lower in the 
agriculture areas than in the urban areas, which may be explained by 
their higher altitude (Souza et al., 2017) and distance to the mining area 
(Fig. 1). 

The ecological risk index revealed that the contamination and 
enrichment of PTEs in Serra Pelada may generate risk to the biological 
community, varying from low to moderate (Nkansah et al., 2017). 
Mining-associated ecological risk from PTEs has been found in risk as-
sessments worldwide. In Krugersdorp soils, South Africa, high ecological 

risk was evidenced, with direct contribution from the high Ni concen-
trations, which was among the three elements in higher concentrations 
(Ngole-Jeme and Fantke, 2017). In Hunan, China, ecological risk was 
identified in soils close to mineral exploration areas, with high Pb and Zn 
concentrations (Lu et al., 2015). 

3.4. Chemical fractionation 

The sequential extraction revealed that the elements predominate in 
the residual form, indicating a strong association with the crystalline 
structures of minerals (Schintu et al., 2016). However, Ba is in high 
concentrations in the most reactive forms (exchangeable þ reducible þ
oxidable) (Gope et al., 2017; Li and Ji, 2017), corresponding to 166.36, 
358.31, 396.8 and 1379.58 mg kg� 1 in the forest, agriculture, urban, 
and mining areas, respectively (Fig. 2 and Table 1S). 

The concentrations of Ba in the three most mobile fractions in the 
mining area may be explained by the soil mobilization in gold explo-
ration, which may have contributed to the changes of Ba, in a process 
accentuated by the high temperature and abundant rainfall in the 
Amazon (Souza et al., 2017). In the urban areas, which are closer and 
downstream from the mine (Souza et al., 2017), the concentrations of Ba 
found may be related to the transport of this metal by water and wind 
(Teixeira et al., 2019). Moreover, in urban areas, the reprocessing of 
mining wastes may have contributed to the Ba concentrations in high 
reactivity fractions. In the agriculture areas, which are further away 
from the mine and there is no reprocessing of wastes, the Ba concen-
trations in high mobility forms were lower than in the urban areas. In the 
forest area, the concentrations may be associated with the greater 
vegetation cover, which reduces losses by erosion and leaching. 

In addition to Ba, with the exception of Cr, all elements are in greater 
concentrations in the most reactive fractions in anthropized areas when 
compared to the natural forest (Fig. 2 and Table 1S). These results 
suggest that anthropogenic activities may have favored the mobilization 
of the elements to high reactivity forms, especially in the mineral 
exploration area. In the agriculture, urban and mining areas, it is also 
likely that the intense rainfall and temperature of the Amazon region 
have directly contributed to changes in the PTEs chemical forms, given 
that these areas have more unprotected soils (Souza et al., 2017). 

In the studied areas, the PTEs deserve attention due to the high 
concentrations in greater mobility fractions, especially where anthro-
pogenic occupation is higher, considering that these concentrations may 
cause risks to human health (Moreira et al., 2018). In addition, residual 
concentrations may be transferred to more mobile forms due to the 
strong weathering in the Amazon conditions, as well as transported to 
other areas by erosion (Teixeira et al., 2019). 

The values of RAC, calculated from the concentrations in the most 
mobile fraction (F1), revealed low risk for all elements and regardless of 
the area, with the exception of Ba, which presents high risk in the forest 
area (35.66%) and medium risk in the areas of agriculture (16.82%) and 
urban (11.61%) (Table 4). In the forest area, that is composed of soils 
with higher clay contents, with high specific surface and more adsorp-
tion sites, losses of Ba in the exchangeable fraction may have been 
reduced due to the greater retention (Sultan and Shazili, 2009). It is 
important to highlight that there is no anthropic occupation in this area, 
therefore, this risk becomes less worrying. On the other hand, the RAC of 
Ba in the agriculture and urban areas, that showed medium risk (Mao 
et al., 2020), deserve more attention due to the human occupation and 
cultivation of plants for consumption. Chronic exposure to high levels of 
Ba may lead to acute hypertension, vomiting, diarrhea, cardiac 
arrhythmia and even death in untreated cases (Abbasi et al., 2016). 

Regardless of the area, the ICF found for all elements indicated low 
soil contamination. As a consequence, the GCF (ΣICF) values were low 
and also indicated low contamination (Zhao et al., 2012), mainly due to 
the high residual concentrations found in the studied areas. These 
indices contrast with those calculated as a function of pseudo total 
concentrations, that revealed contamination by Ba, Cu and Ni. However, 

Table 3 
Enrichment factor (EF), index of geoaccumulation (Igeo), contamination factor 
(CF) and potential ecological risk index (PERI) of Ba, Cr, Cu, Ni, Pb, and Zn in 
soils and mining wastes from the influence area of the Serra Pelada gold mine, 
Brazil.  

Element Index Area 

Agriculture Mining Urban 

Ba EF 5.39 115.60 8.27 
Igeo 0.48 3.20 0.63 
CF 2.93 13.82 2.66 

Cr EF 0.76 0.73 0.90 
Igeo � 1.57 � 2.93 � 2.17 
CF 0.57 0.20 0.40 

Cu EF 4.03 10.56 8.51 
Igeo 0.60 0.45 0.51 
CF 2.49 2.05 3.60 

Ni EF 2.29 14.16 7.99 
Igeo � 0.31 0.71 0.60 
CF 1.48 2.45 2.75 

Pb EF 1.28 2.44 1.75 
Igeo � 0.80 � 1.56 � 1.17 
CF 0.94 0.51 0.71 

Zn EF 0.79 3.39 1.16 
Igeo � 1.79 � 1.12 � 2.29 
CF 0.47 0.69 0.52 

All PERI 32.01 53.78 41.96  
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it is important to emphasize that although the chemical fractionation 
indices have shown low contamination, the concentrations in high 
mobility forms deserve attention because they can bring risks, especially 
in the case of Ba. 

According to the MF found, the elements follow the order Ba > Ni >
Cu > Zn > Pb > Cr in the agriculture area, Ba > Cr > Cu > Ni > Pb > Zn 
in the forest area, Ba > Ni > Cu > Cr > Pb > Zn in the mining area, and 
Ba > Ni > Zn > Cu > Cr > Pb in the urban area, indicating that Ba is the 
most mobile element, regardless of the area, with MF ranging from 
25.97 to 43.26%. Ni is the second most mobile element in all areas, 

except in the natural forest, while Pb is the least mobile PTE in the urban 
areas and the second least mobile in the other areas. 

3.5. Oral bioaccessibility 

The highest oral bioaccessible concentrations among the PTEs 
studied were found for Ba, in both phases and regardless of the area. In 
addition, it is notable that this element is in higher concentrations in the 
areas of greatest anthropic influence, being 6, 7 and 10 times higher in 
the gastric phase in the urban, mining and agriculture areas, 

Fig. 2. Chemical fractionation of Ba, Cr, Cu, Ni, Pb, and Zn in soils and mining wastes from the influence area of the Serra Pelada gold mine, Brazil. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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respectively, and 6, 6 and 8 times higher in the intestinal phase in the 
agriculture, mining and urban areas, respectively (Fig. 3). 

Ba did not show a clear behavior regarding the pH change between 
the gastric (pH 1.5) and intestinal (pH 7) phases, being more bio-
accessible in the gastric phase in the agriculture and mining areas, and 
more bioaccessible in the intestinal phase in the forest and urban areas 
(Fig. 3). Concentrations higher in the gastric phase in the agriculture and 
mining areas may be associated with the precipitation of mineral phases 
of Al and Fe oxides and hydroxides at high pH, generating sorption sites 
that decrease Ba solubility (Abbasi et al., 2016). On the other hand, in 
the forest and urban areas, the higher bioaccessibility in the intestinal 
phase may me related to the dissolution of Ba(OH)2 at high pH (Abbasi 
et al., 2016). The oral bioaccessible concentrations of Ba in the areas of 
greatest anthropogenic influence, regardless of the phase, are worrying 
due to the absorption risk by ingestion. 

Elements such as Cr, Cu, Ni, Pb and Zn tend to have greater bio-
accessibility in the gastric phase due to the high acidity of the stomach 
environment, which generally increases the solubility of these metals 
(Fern�andez-Caliani et al., 2019). However, this behavior was observed 
only for Cr, Cu and Pb (except for Pb in the agriculture area), while Zn 
and Ni were more bioaccessible in the intestinal phase (except for Ni in 
the forest area) (Fig. 3). 

The lower oral bioaccessible concentration of Ni in the gastric phase 
of the agriculture, urban and mining areas may be related to the 
occurrence of Ni minerals with low solubility at low pH (Vasiluk et al., 
2019). These results are in accordance with the behavior of Ni in the 
three most mobile forms of the soils in these areas (Fig. 2), which pre-
sented higher pH and Ni concentrations than those found in the forest 
area. Higher bioaccessible concentration of Ni in the intestinal phase 
(2.24 mg kg� 1) when compared to the gastric phase (1.66 mg kg� 1) was 
also observed in soils from urban areas in Guangzhou, China (Gu and 
Gao, 2018). 

The higher oral bioaccessible concentrations of Zn in the gastric 
phase in relation to the intestinal phase may be explained by the pre-
cipitation of this metal in neutral or alkaline pH (Liu et al., 2018; Souza 
et al., 2018), especially with Fe oxides, which have their formation 
favored in this condition (Mendoza et al., 2017). The same trend was 
observed in soils from agriculture areas close to Zn and Pb mines in 
Guangdong province, China, in which the oral bioaccessibility of Zn in 
the gastric phase (6.25% total Zn) was higher than in the intestinal phase 

(2.30% total Zn) (Li et al., 2019), and in five agriculture areas close to 
mine tailings deposits in Spain, where the oral bioaccessibility of Zn 
decreased from 266, 181, 314, 238 and 334 mg kg� 1 in the gastric phase 
to 57, 38, 54, 48 and 64 mg kg� 1 in the intestinal phase (Fern�andez--
Caliani et al., 2019). 

For oral bioaccessible Pb in the gastric phase of the agriculture area, 
which presented a lower concentration in relation to the intestinal 
phase, the occurrence of more stable and low solubility minerals (such as 
Pb sulfates and phosphates) in acidic conditions may have favored the 
lower bioaccessibility (Pelfrêne et al., 2013). However, in most cases, Pb 
presents a behavior similar to that found in the forest, mining and urban 
areas (higher concentrations in the gastric phase), as in soils from 
industrialized areas in Ireland (Palmer et al., 2015), in China (Fujimori 
et al., 2018) and in urban areas in Mexico (Gonz�alez-Grijalva et al., 
2019). 

The greater oral bioaccessibility of Cu in the intestinal phase may be 
related to uncharged complexes formation, such as Cu(Gly)2, at pH 7.0, 
which reduces the interaction of Cu with the soil surface and increases 
bioaccessibility (Mendoza et al., 2017). In addition, it is possible that 
organic binders with a high affinity for Cu have formed complexes with 
this metal at neutral pH (Cai et al., 2016). Higher bioaccessible con-
centration of Cu in the intestinal phase was also found in soils in Glas-
gow, United Kingdom (Sialelli et al., 2010), Torino, Italy (Sialelli et al., 
2011), New York, United States (Cai et al., 2016), and in the Central 
Valley of Chile (Mendoza et al., 2017). 

For Cr, which showed a similar behavior to Cu, the higher oral bio-
accessible concentration in the intestinal phase may be associated to 
formation of soluble oxo-species at a higher pH (Sialelli et al., 2011). 
Higher bioaccessible concentrations of Cr in the intestinal phase were 
also found in soils of urban areas of Newcastle, England (Okorie et al., 
2011). In soils from forest areas in the Amazon, the oral bioaccessible 
concentrations of Cr varied between 21 and 22 mg kg� 1 (Moreira et al., 
2018), similar to those found in the intestinal phase of the forest area in 
this study (Fig. 3). 

3.6. Lung bioaccessibility 

Lung bioaccessible concentrations of Cu, Ni and Pb were found in all 
areas, with emphasis on Pb, which varied from 75.22 to 89.07 mg kg� 1 

(Table 5). Ni and Pb showed higher lung bioaccessibility in the mining 
area and lower in the forest area. Ba, Cr and Zn were not lung bio-
accessible, regardless of the area. 

Pb is among the elements that receive priority attention for public 
health (Tchounwou et al., 2012). The lung bioaccessible concentrations 
of Pb may lead to high toxicity in the study area. Furthermore, the lung 
bioaccessible levels of Cu and Ni (although lower than those found for 
Pb) also deserve attention because these elements may cause toxic ef-
fects by inhalation when combined (Guney et al., 2016), which become 
even more alarming due to the higher levels in the areas of greater 
human occupation. 

4. Conclusion 

Indices calculated from pseudo total concentrations indicate 
contamination by Ba, Cu and Ni, especially for Ba in the mining area. 
However, chemical fractionation revealed that the elements predomi-
nate in the residual form, showing the strong association of these metals 
with the crystalline structures of minerals. 

Even predominating in the residual fraction, Ba is in high concen-
trations in the three more mobile fractions and in concentrations that are 
oral bioaccessible in both phases, which are higher in areas with greater 
anthropic influence, indicating that the anthropogenic activities may 
have increased the Ba concentrations in high mobility fractions and the 
oral bioaccessibility. Cr and Cu are more oral bioaccessible in the in-
testinal phase and Zn in the gastric phase, regardless of the area. Ba, Cr 
and Zn are not lung bioaccessible, while Cu, Ni and Pb are bioaccessible 

Table 4 
Risk assessment code (RAC), individual contamination factor (ICF), mobility 
factor (MF) and global contamination factor (GCF) of Ba, Cr, Cu, Ni, Pb, and Zn 
in soils and mining wastes from the influence area of the Serra Pelada gold mine, 
Brazil.  

Element Index Area 

Agriculture Forest Mining Urban 

Ba RAC (%) 16.82 35.66 2.72 11.61 
ICF 0.47 0.76 0.35 0.63 
MF (%) 31.80 43.26 25.97 38.75 

Cr RAC (%) NCa NC 7.84 2.14 
ICF 0.01 0.15 0.12 0.07 
MF (%) 1.47 13.33 10.59 6.25 

Cu RAC (%) 0.66 NC 4.35 3.61 
ICF 0.10 0.08 0.16 0.09 
MF (%) 8.87 7.71 14.00 7.93 

Ni RAC (%) 3.82 1.92 4.67 7.98 
ICF 0.11 0.02 0.31 0.48 
MF (%) 9.55 1.92 23.79 32.65 

Pb RAC (%) 1.14 0.51 1.72 NC 
ICF 0.03 0.02 0.10 0.06 
MF (%) 2.72 1.83 8.83 5.88 

Zn RAC (%) 3.17 NC 0.88 5.45 
ICF 0.07 0.00 0.02 0.15 
MF (%) 6.85 0.32 1.86 12.89 

All GCF 0.79 1.04 1.06 1.48  

a Non-calculated in function of concentrations below the detection limit. 
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through inhalation. 
The PTEs studied deserve attention in Serra Pelada because of the 

high pseudo total concentrations (which indicate high potential risk), 
and concentrations found in the greater mobility forms and bio-
accessible fractions (oral and pulmonary), especially in the areas of 
greatest anthropogenic occupation, where these elements are in direct 
contact with the population. 
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Fig. 3. Oral bioaccessibility of Ba, Cr, Cu, Ni, Pb, and Zn in soils and mining wastes from the influence area of the Serra Pelada gold mine, Brazil. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 5 
Lung bioaccessibility of Ba, Cr, Cu, Ni, Pb, and Zn in soils and mining wastes from the influence area of the Serra Pelada gold mine, Brazil.  

Bioaccessible concentration (mg kg� 1) Area 

Agriculture Forest Mining Urban 

Ba BDa BD BD BD 
Cr BD BD BD BD 
Cu 20.47 � 6.70 7.19 � 0.80 22.60 � 5.15 16.77 � 3.19 
Ni 23.40 � 12.04 18.21 � 4.98 30.23 � 9.55 24.62 � 6.96 
Pb 89.07 � 6.02 78.51 � 19.19 75.22 � 17.22 77.80 � 15.42 
Zn BD BD BD BD  

a Below the detection limit. 
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