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ABSTRACT

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical
forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical
forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the character-
istics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and pro-
visioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and
classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different eco-
systems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we pro-
pose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different
successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to sup-
port the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain
composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does
not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an
optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional tra-
jectory represents the maximum EI that can be attained at each successional stage in a given region and enables the eval-
uation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators
(species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy
cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape
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connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem
services, restore forests and contribute to ecosystem conservation.

Key words: natural regeneration, secondary succession, ecological restoration, tropical forests, indicators, monitoring,
vegetation structure, resilience.
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I. INTRODUCTION

The Anthropocene is an era of unprecedented human
impacts on the environment, where large extents of natural
ecosystems have been converted and transformed (Hansen
et al., 2013). The level of ecosystem transformation has histor-
ically been associated with their ecological integrity (EI; for
definitions of key terms see Table 1) (Karr & Dudley, 1981;
Karr, Larson & Chu, 2022), with undisturbed ecosystems
having higher EI – and therefore higher conservation value
– and recovering systems having lower EI. This view ignores
the temporal dynamics of ecosystem recovery and the fact
that a recovering ecosystem can be functioning perfectly well
despite being (still) very different from the undisturbed ones.
While the concept of EI has helped set priorities for the con-
servation of ecosystems, it fails to protect recovering systems
that might importantly contribute to ecosystem functioning
and biodiversity conservation at different scales. Adapting
the concept to allow assessment of the EI of systems during
the recovery process is of utmost importance for land-use
planning and efficient implementation of biodiversity conser-
vation and ecosystem restoration in the Anthropocene.

Tropical forest regrowth covers approximately 600million
hectares (Pan et al., 2011) and plays a crucial role in biodiver-
sity conservation and ecosystem service provision in human-
modified landscapes (Chazdon, 2014; Matos et al., 2020).
Under optimal conditions, successional or secondary forests
(SFs) that regrow naturally after the abandonment of pasture
and agricultural lands can attain many similar characteristics
to mature forests within a few decades to centuries (Poorter
et al., 2021). These SFs can harbour a high diversity of plants
and animals (Chazdon et al., 2009), including many species

useful to people (Toledo & Salick, 2006; Junqueira, Shepard
Jr. & Clement, 2010), connect forest fragments (Arroyo-
Rodríguez et al., 2017), sequester large amounts of carbon
(Pan et al., 2007; Poorter et al., 2016) and conserve floristic
distinctiveness of biomes (Jakovac et al., 2022). Under limiting
conditions, however, succession can be arrested, and fail to
restore ecosystem functions fully (Arroyo-Rodríguez
et al., 2017). Differentiating these different ecological condi-
tions along the stages of succession, i.e. before its full recov-
ery, is essential for identifying the conservation and
restoration value of SF patches and the need for manage-
ment to accelerate recovery.

Decades of studies on tropical forest succession have iden-
tified how natural and anthropogenic drivers affect the
capacity of forests to regenerate. Drivers operating at differ-
ent spatial scales importantly affect the capacity of forests to
regenerate and to return to levels similar to their original
state, through their influence on species availability and per-
formance (Pickett, Collins & Armesto, 1987). At the regional
scale, climate and soil properties define productivity levels
and functional characteristics that shape the divergent rates
of recovery of different forest types (Poorter et al., 2016;
Rozendaal et al., 2019). At the landscape scale, forest cover
and configuration determine forest connectivity and conse-
quently the availability of seeds and biotic dispersal agents
(Robiglio & Sinclair, 2011; Arroyo-Rodríguez et al., 2017).
At the local scale, previous and current land use determine
local soil quality and in situ propagule availability such as
seeds, stumps, or sprouts (Mesquita et al., 2001; Gehring,
Denich & Vlek, 2005; Jakovac et al., 2021). SFs that regrow
in fragmented landscapes and on sites with an intensive
land-use history have a limited capacity to restore ecosystem
functioning, reduced recovery rates of vegetation structure
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and diversity, and show altered species compositions (Styger
et al., 2007; Jakovac et al., 2015; Mesquita et al., 2015; Pinho
et al., 2018; César et al., 2021; Heinrich et al., 2021). Within
a given forest type and region, therefore, the level of anthro-
pogenic impact at the landscape and local levels ultimately
determines the ecological condition of SFs and their capacity
to recover ecosystem functioning fully.

We lack, however, a theoretical basis that allows classifica-
tion of the ecological condition of SF patches during the
recovery process, i.e. at different ages after abandonment.
Current concepts of ecological condition, such as EI
(Karr & Dudley, 1981; Karr et al., 2022), use reference sys-
tems that can be decades away from early recovering forests,
making reasonable comparisons difficult. Forest restoration
assessments use average values from naturally regenerating
forests as references for monitoring restoration success,
ignoring that natural succession can be arrested. Setting
intermediate benchmarks over time (Balaguer et al., 2014)
that reflect an optimal successional trajectory could facilitate
the assessment of ecosystem recovery at different successional
stages. Setting such benchmarks over the successional process
requires recognizing the variation in successional pathways.
Additionally, ecosystem attributes show different trajectories
over time and different rates of recovery (Poorter et al., 2021),
potentially requiring different indicators for each succes-
sional level. The accumulated knowledge on the limiting con-
ditions for succession and the drivers of multiple successional
pathways can support the design of a concept and indicators

that allow assessing and classifying the EI of different succes-
sional stages or stand age.
Herein we review the literature to understand how EI has

been assessed in different ecosystems, and which EI indica-
tors are commonly used for tropical forests. Specifically, we:
(i) modify the concept of EI so that it embraces temporal
dynamics and is applicable to SFs; (ii) identify a list of indica-
tors that can be used to evaluate the EI of SFs; and (iii) asso-
ciate indicators of EI to the provision of ecosystem services, in
order to connect the theoretical concept with its societal rel-
evance. This study synthesizes the literature to promote a
theoretical basis for identifying and classifying the ecological
condition of SFs, allowing for better land-use planning, and
the implementation and monitoring of conservation and
restoration initiatives. Eventually, this will help in achieving
the ambitious climate-change mitigation goals (e.g. Bonn
Challenge, Paris Agreement, and Trillion Trees programs;
Brancalion & Holl, 2020) as well as efficiently implementing
the targets for the UN Decade on Ecosystem Restoration.

II. MATERIALS AND METHODS

To identify the main concepts and indicators associated with
EI, we conducted two separate literature searches in Web of

Science. The first search aimed to identify and describe the
concepts and main ecological components of EI, as applied

Table 1. Terminology and definitions used in this study.

Term Definition

Component (of EI) Main group of elements that define the integrity of an ecosystem (composition, structure and function).
Ecological integrity (EI) The capacity of a system to support and maintain a balanced, integrated, adaptive community of organisms

with a species composition, diversity, and functional organization comparable to that of natural habitat of the
region.

Ecological resilience Ability of ecosystems to absorb changes of state variables and reorganize or adapt to multiple ecosystem
equilibrium states.

Ecosystem attributes Characteristics of an ecosystem that can be identified and potentially measured.
Ecosystem functioning The outcome of a set of processes and ecological functions determined from biotic and abiotic interactions.
Ecosystem health Specific types and rates of ecological processes and arrangement of structural elements that characterize diverse

and productive ecosystems.
Ecosystem services The benefits that people obtain from ecosystems (Millennium Ecosystem Assessment, 2005) or the

contributions of ecosystem structure and function (in combination with other inputs) to human well-being
(Burkhard & Maes, 2017).

Indicator Ecosystem attribute or measure of environmentally relevant phenomena used to depict or evaluate ecosystem
conditions and their changes or to set environmental goals (Heink & Kowarik, 2010; Prach et al., 2019). A
good indicator is easy to measure, is sensitive to stresses and has a known response to natural and
anthropogenic disturbances and changes over time (Dale & Beyeler, 2001).

Mature reference state Historical natural characteristics from an undisturbed ecosystem or an ecosystem in an advanced stage of
succession.

Old-growth forest A forest ecosystem that has grown for a long period of time (usually over 100 years old) and that harbours
historically known characteristics associated with biodiversity and ecosystem functioning.

Resilience See Ecological resilience.
Secondary forest (SF) Regenerating forests growing after disturbances such as logging or complete land clearance of the original

forest, usually on abandoned pastures or agricultural fields. SFs can originate from fully natural regeneration,
assisted regeneration or active planting.

Succession (secondary
succession)

Process of recovery of natural ecosystems following natural or anthropogenic disturbance events.
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to any ecosystem type (e.g. aquatic or terrestrial systems).
The aim of this search was to obtain as broad an input as pos-
sible, to define a concept of EI that is relevant to (secondary)
forests. The second search aimed to identify indicators that
are specifically used to evaluate EI of forest systems.

The search string used for search #1 was:
TITLE = (‘ecological integrity’ OR ‘ecological quality’ OR ‘ecological
health’ OR ‘ecological resilience’ OR ‘biotic integrity’ OR ‘biotic qual-
ity’ OR ‘biotic health’ OR ‘biotic resilience’ OR ‘ecosystem integrity’
OR ‘ecosystem quality’OR ‘ecosystem health’ OR ‘ecosystem resilience’
OR ‘forest integrity’ OR ‘forest quality’ OR ‘forest health’ OR ‘forest
resilience’). We thus searched using the most common con-
cepts used to describe and assess some sort of ecological qual-
ity of ecosystems in order to identify a concept that was most
likely to embrace SFs. We included combinations of the
words health, quality and resilience as they may be used in the lit-
erature with a similar meaning to integrity. We restricted our
search to review articles from environmental disciplines
(Environmental science, Biodiversity conservation, Ecology,
Forestry, Remote sensing, Geosciences multidisciplinary,
Environmental studies, Physical Geography, Multidisciplin-
ary sciences, Plant sciences, and Biology). This first search
returned a total of 112 articles. We first screened the title
and abstract from these articles, identifying if the main objec-
tive of the study revolved around concepts and/or indicators
of EI in native ecosystems. This screening reduced the num-
ber of relevant articles to 50, which were then assessed by
reading the main text to identify the concepts of EI used,
and whether they represented a new concept or a citation
of an older reference. We excluded nine articles that did
not explicitly indicate the concept they were using, resulting
in a total of 41 articles (Table S1). Additionally, we assessed
the original studies cited within the compiled references if
they were not located by our search and included these arti-
cles (N = 6; Table S1) and concepts in our final results. This
search enabled us to identify not only the concepts associated
with EI, but also the main components used to describe it.

For search #2, we focused on the indicators used to evalu-
ate EI in forest ecosystems. This search was not constrained
by methodology (search #1 was restricted to review articles),
so it included original research studies using field data,
modelling or remote-sensing approaches, as well as review
articles. We used the same search string as above, with the
additional terms: AND TOPIC = (forest*) AND (indicator* OR

metric*). This search was restricted to the same environmental
disciplines listed above and returned a total of 140 articles.
We performed an initial screening to remove studies focused
on aquatic systems (e.g. mangrove, stream and wetland stud-
ies), non-forest native ecosystems (e.g. coastal vegetation,
grassland or savanna, and urban forest), species or organism
characteristics (i.e. not addressing EI directly, and studies
that focused only on the effect of air pollutants and pathogens
on tree health) and studies that did not clearly present a list of
indicators. We also removed two studies that were not avail-
able for download. This resulted in a final total of 72 articles
(Table S2). From each article, we extracted information on
the study sites (region, history of disturbance), the indicators

used to evaluate EI (indicator name and metric, and
associated component of EI) and finally, the ecosystem ser-
vices associated with each indicator (Table S3) as indicators
of EI could be used to assess ecosystem services. For the
most frequent indicators that resulted from our screening,
we assessed, based on expert knowledge, the quality of its
association with ecosystem services: categorized as good, fair
or no direct association.

We assessed the suitability of these indicators to evaluate
the EI of SFs based on the following main evaluation criteria:
(i) its behaviour is known in different forest types and across
successional trajectories; (ii) it is easy to measure, monitor
and understand; and (iii) it can be used at different spatial
scales (patch or landscape level). For our analysis we further
subdivided these into five evaluation criteria, we: (i) used
the most frequent indicators that resulted from our screening,
which are those more commonly used and known to assess
patterns and processes in ecological studies, and determined
in which successional stage they most efficiently indicated
variations in EI (early, intermediate or late); (ii) classified
indicators according to sampling complexity (easy – rapid
assessment; medium – requires some specific knowledge; or
hard – complex indicator requiring specialized equipment);
(iii) classified indicators according to sampling frequency
required (single or multiple); (iv) classified indicators by main
methodological approach required (field based, remote
sensing, other); and (v) classified indicators according to the
spatial scale assessed [local plot (patch) or landscape level].
See Table S3 and Appendix S1 for the full list of information
extracted from articles. Based on this classification scheme
and on our expertise, we thus identified and classified the
indicators both in terms of usefulness to assess overall EI of
SFs and on cost-effectiveness and applicability for ecological
assessments and monitoring. We focus on individual metrics
instead of compound indices comprising multiple indicators
because individual indicators (i) are easier to interpret and
to implement by a wide range of technicians, (ii) allow for
the identification of management practices required to
improve the EI of successional forests (whereas a compound
index would require de-composing to interpret which metric
is most influential), and because (iii) the suitability of indica-
tors might change with successional age.

III. LITERATURE REVIEW

(1) Concepts and main components of EI

Among the 47 articles assessed for search #1, three main con-
cepts were presented: ecological or biotic integrity, ecological
resilience, and ecosystem or forest health. EI was first defined
by Karr & Dudley (1981, p. 56), as ‘[…] the capacity of support-

ing and maintaining a balanced, integrated, adaptive community of

organisms having a species composition, diversity, and functional organi-

zation comparable to that of natural habitat of the region. […] A system

possessing integrity can withstand, and recover from most perturbations
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imposed by natural environmental processes, as well as many major dis-

ruptions induced by man’. This concept was initially proposed to
monitor aquatic systems, mainly with regard to water quality
goals for human use (Karr & Dudley, 1981). It was later
adapted by Parrish, Braun & Unnasch (2003, p. 852), as
‘the ability of an ecological system to support and maintain a community

of organisms that has species composition, diversity, and functional orga-

nization comparable to those of natural habitats within a region. An eco-

logical system or species has integrity or is viable when its dominant

ecological characteristics (e.g., elements of composition, structure, func-

tion, and ecological processes) occur within their natural ranges of varia-

tion and can withstand and recover from most perturbations imposed by

natural environmental dynamics or human disruptions’. Andreasen
et al. (2001), who developed a terrestrial index of EI, and
Tierney et al. (2009), who addressed the monitoring and eval-
uation of EI of forest ecosystems, are often incorrectly cited as
the source of the concept, with the concepts they use being
the ones proposed by Karr & Dudley (1981) and Parrish
et al. (2003) as described above. For a detailed history of the
concept of EI, its terms and usage, seeWurtzebach & Schultz
(2016) and Roche & Campagne (2017).

Ecological resilience is implicitly included in the concepts
discussed above, but it has often been used separately in the
ecological literature. Holling (1973, p. 17) first defined eco-
logical resilience as ‘resilience determines the persistence of relation-
ships within a system and is a measure of the ability of these systems

to absorb changes of state variables, driving variables, and parameters,

and still persist’. Holling (1973) characterized stability as per-
sistence of a system near or close to an equilibrium state
and resilience as the amount of disturbance that a system
can absorb without changing its state. More recently,
Gunderson (2000) presented a review of ecological resilience
theory and application, and proposed that no single mecha-
nism can guarantee the maintenance of resilience. When a
system experiences shifts into an undesirable state, a diversity
of ecological processes allows the system to reorganize itself
and return to a desirable state or to reorganize and adapt
to the alternative condition.

Ecosystem health and forest health concepts correspond to
different notions of the status of ecosystems. The use of the
word ‘health’ comes from a human-centred utilitarian/
instrumental perspective and was initially associated with
organism-level measurements, e.g. tree health (Kolb,
Wagner & Covington, 1994; Ferretti, 1997). The term
‘health’ can be used as a bridge between scientists and non-
scientists regarding the values of ecosystems (Kolb
et al., 1994). Rapport (1989) and Costanza (1992) initially
suggested approaches to characterize andmeasure the health
of nature. In an ecosystem perspective, Kolb et al. (1994,
p. 12) found great difficulty in applying the concept of health
to such complex systems as forests, and suggested that a def-
inition should include ‘specific types and rates of ecological processes,
and numbers and arrangement of structural elements that characterize

diverse, productive, forest ecosystems in major biogeographic regions’.
Kolb et al. (1994, p. 12) also listed four essential elements in
their definition of forest ecosystem health: ‘(1) physical and
biotic resources to support forest cover; (2) resistance to catastrophic

change and/or ability to recover after catastrophe; (3) functional

equilibrium between supply and demand of essential resources; and

(4) diversity of seral stages and stand structures’.
Regardless of the wording, all concepts presented above

have similarities regarding the most important components
that characterize EI, which include native species, structural
and physical characteristics, ecosystem functioning and abil-
ity to recover after disturbance. Following the main compo-
nents of EI proposed by Karr & Dudley (1981) and Parrish
et al. (2003), which divided EI into composition, structure,
and function, and the concepts of health discussed above,
we further subdivide these three components into separate
categories applicable to forest ecosystems (Table 2): (i) Com-
position has a single category – Biological diversity; (ii) Struc-
ture is subdivided into two categories –Vegetation structure,
and Landscape structure and composition; and (iii) Function
has three categories – Physical or environmental condition,
Ecosystem functioning, and Resilience (see Table 1 for defi-
nitions). This enabled us to accommodate these concepts
more explicitly and to classify indicators accordingly, encom-
passing different aspects of the integrity of natural ecosys-
tems. These different categories encompass different spatial
scales, from landscape-level attributes setting the landscape
matrix context (landscape structure and composition) to
patch conditions (biological diversity and vegetation struc-
ture), which together determine ecosystem functioning and
resilience.

(2) Indicators and patterns across forest succession

Indicators are measurable characteristics of the ecosystem
that are related to the ecosystem condition or state
(Table 1). Indicators provide information on the current con-
dition of an ecosystem and enable the evaluation of ecosys-
tem development over time (Wurtzebach & Schultz, 2016).
They can be used to assess levels of degradation of ecosystems
and to identify the need for management interventions in
order to achieve a specified goal. In the case of EI, indicators
are related to composition, structure and function compo-
nents. Good indicators should be concise and reflect changes
in community and/or ecosystem attributes (Table 1), being
able to be used by researchers and practitioners to monitor
ecosystem recovery.
Based on our literature search, we found 58 indicators

(Table 2; Appendix S2) and 33 indices (i.e. combinations of
multiple indicators) used to evaluate forest EI (Table S4).
For each group of indicators, we listed a number of indicator
metrics (see Table S5 for full list) that were used in each study,
either using field-based or remote-sensing approaches. Indi-
ces based on combinations of multiple metrics were used to
evaluate broad ecosystem integrity (e.g. Ecological Resilience
Index, Ecosystem Health Index, Index of Biotic Integrity;
Table S4). From the full list of indicators, the 10 most fre-
quently assessed indicators (Table 3) were related to compo-
sition (indicator species or group; species diversity or
richness); structure (canopy cover and structure; herbaceous
or shrub cover or abundance; landscape composition and
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heterogeneity; landscape connectivity and fragmentation;
tree size and biomass); and function (tree growth and mortal-
ity; vegetation condition and damage; soil physical and/or
chemical parameters). Additionally, we indicate the quality
of these indicators in terms of assessment of ecosystem ser-
vices potentially provided by forests (Table 3).

IV. APPLICATION OF CONCEPTS AND
INDICATORS TO SFS

(1) Including successional forests in the concept
of EI

The EI concepts (described above) use a desirable state as a
reference (Andreasen et al., 2001; Wurtzebach &
Schultz, 2016), which is usually a non-disturbed state, such
as an old-growth forest located within the same region.
This desirable state is often described through the natural
range of values of multiple indicators. This assumes that the
reference ecosystem holds the highest EI and the more similar
a system is to its undisturbed original condition, the higher is its
EI. This definition fails to incorporate changes in state condi-
tion during the process of forest regeneration, and conse-
quently assumes that EI is directly dependent on the time
since recovery started, i.e. the age of the SF. To acknowledge
the successional dynamics, intermediate reference states
should be considered, in addition to the undisturbed state, to
represent the optimal successional trajectory. Our approach
is very similar to that used in monitoring children’s health:

although there is a need to know the physical and mental
conditions they must achieve by adulthood, it is more
important to assess health across a trajectory of development
and growth.

We modified the definition from Parrish et al. (2003) to
allow it to be applied to and operationalized for SFs. Thus,
we describe EI as ‘the ability of an ecological system to sup-
port and maintain a community of organisms that has species
composition, diversity, and functional organization compa-
rable to those of natural habitats within a region and at a given

age class. An ecological system has integrity when its dominant
ecological characteristics/indicators (e.g. elements of compo-
sition, structure, and function) occur within an optimal natu-
ral range for that specific age class (i.e. time since succession started)
and can withstand and recover from most perturbations
imposed by natural environmental dynamics or human dis-
ruptions’. This means that SFs following successional trajec-
tories under optimal conditions can serve as a reference for
the maximum EI possibly attained at each successional stage
(or age class) in a given region and forest type. Optimal con-
ditions imply minimum limitations for successional processes,
i.e. high species availability and favourable conditions for
species performance. Such optimal conditions for forest suc-
cession can be found in forest gaps and in transformed land-
scapes with a land-use history of low intensity, duration and
frequency and with a high forest cover (Fig. 1).

To make this concept operational, we propose that
reference values of indicators are retrieved from two refer-
ence systems: an undisturbed or mature reference state
(as historically used for EI) and an optimal successional

Table 2. Main components of ecological integrity (EI) (see Section III.1) and associated indicators (see Section III.2).

Main and (sub)components
of EI

Associated indicators

Composition
Biological diversity Indicator species or group, phylogenetic traits, sapling and/or seedling composition, sapling and/or

seedling diversity or richness, species composition, species composition dynamics, species distribution
dynamics, species diversity or richness, species functional diversity, species functional traits or groups

Structure
Vegetation structure Canopy cover and structure, community structure (plant), habitat condition, herbaceous or shrub cover or

abundance, sapling and/or seedling abundance, sapling and/or seedling condition and size, snag and
coarse woody debris, stand age, surface reflectance indices, surface texture measures, tree abundance,
tree crown attributes, tree size and biomass, vegetation cover

Landscape structure and
composition

Anthropogenic pressure, habitat specialization, land-cover and land-use dynamics, landscape composition
and heterogeneity, landscape connectivity and fragmentation, landscape diversity, patch abundance,
patch size, topography

Function
Physical or environmental
condition

Chemical parameters of deposition, soil erosion, soil physical and/or chemical parameters, water regimes

Ecosystem functioning Community health (animal), community structure dynamics, ecosystem service provision or monetary
value, flower, fruit and seed attributes, growth andmortality, insect outbreak frequency or intensity, litter
structure, productivity and carbon sequestration, recruitment, species functional traits or groups change,
tree growth and mortality, trophic interactions, vegetation condition and damage, water-related
processes (transpiration, water-use efficiency, etc.)

Resilience Disturbance frequency or intensity, disturbance model, forest recovery rate, network resistance,
productivity and carbon sequestration dynamics, resilience coefficient or score, trajectories of vegetation
condition and damage
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trajectory. For the mature reference, a range of values must
be identified that embrace the spatio-temporal variation in
the absolute values of indicators found in old-growth forests
or, in their absence, in forests in advanced stages of succes-
sion located in the same biogeographic region. For the opti-
mal successional trajectory, values of indicators should be
retrieved for different age classes or successional stages along
trajectories under minimum limitations to succession. While
limitations to succession reduce the EI of SFs, restoration and
management practices have the potential to foster succession
and improve the EI of SF patches (Fig. 1). The optimal suc-
cessional trajectory can be expressed as absolute values
(e.g. biomass values of 100Mg ha−1 at 20 years) or as propor-
tions relative to the old-growth forests in the region (e.g. early
successional forests will show 10–20% of the value found in
mature forests located in the region). Deviations from the
natural range of values found in the optimal successional tra-
jectory should be interpreted as a reduction or increase in
EI (Fig. 1).

Building upon previously published EI concepts, we modify
the concept of EI to add the temporal dynamics of SFs, allow-
ing the assessment of EI across different successional stages.
Previous studies have used mature forests and average values
of naturally regenerating forests as references for monitoring
forest restoration (e.g. Londe et al., 2020), overlooking the large
variation in successional pathways as a result of limitations to
succession. Here we explicitly recognize the large variation in
indicator values across successional trajectories and propose
that an optimal successional trajectory should be used as a
reference.
Operationalizing this reference of an optimal successional

trajectory, however, can be challenging. Such reference sys-
tems may not exist in degraded landscapes or in entire
regions that have an ancient history of intense anthropogenic
transformation. To circumvent this limitation, modelling
approaches using data from multiple landscapes could build
scenarios of low anthropogenic impact to model optimal suc-
cessional trajectories. Moreover, future studies should

Table 3. The 10 most frequently assessed indicators of forest ecological integrity used in the literature and their associations with eight
different ecosystem services. The number of papers that assessed each indicator is shown in parentheses. Bullet points indicate whether
the indicator is categorized as good (●) or fair (�) in assessing ecosystem services; cells without bullet points indicate no direct association.

Indicator name
Climate
regulation

Soil
conservation

Pollination
or pest
control

Air quality
or water
regulation

Biodiversity
conservation

Habitat
integrity

Provision:
wild fruits
and seeds

Cultural
services

Composition
Species diversity
or richness (24)

●

Indicator species
or group (21)

� ● � � �

Structure
Tree size and
biomass (22)

● � ● � �

Landscape
connectivity and
fragmentation
(16)

� � �

Canopy cover and
structure (13)

● � �

Herbaceous or
shrub cover or
abundance (13)

� � � �

Landscape
composition
and
heterogeneity
(11)

� � � ●

Function
Tree growth and
mortality (14)

●

Vegetation
condition and
damage (13)

�

Soil physical
and/or
chemical
parameters (11)

●
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investigate whether optimum successional trajectories can be
characterized by the proportional values of indicators in rela-
tion to the old-growth forest and whether these can be
applied across regions. Additionally, studies should provide
decision-makers with maps or tables of regionalized refer-
ence values for both old-growth forests and optimum succes-
sional trajectories using either data-based or model-based
approaches.

(2) Successional trends of indicators

The successional behaviour of most of these frequently used
indicators of EI (Table 3) is well known, especially for vegeta-
tion attributes (Finegan, 1996). A recent meta-analysis across
a range of climatic conditions (ca. 1200–2500 mm of annual
rainfall) showed that recovery to 90% of old-growth values is
fastest for soils (<1 decade) and plant functions (<2.5 decades),
intermediate for vegetation structure and species diversity
(2.5–6 decades), and slowest for biomass and species
composition (>12 decades) (Poorter et al., 2021). Despite the
large variation in successional pathways and rates of regrowth
across landscapes (Norden et al., 2015), predictable general
patterns have been described and are summarized below
for themost frequently used indicators of EI (Table 3). Tropical
forest successional stages, following optimal trajectories
(Fig. 1, dark green band), are summarized following Finegan
(1996) as: early stage characterized by the colonization of
herbs, shrubs and pioneer tree species (0–10 years of regrowth),
intermediate stages when pioneer trees dominate the canopy
(10–30 years) and late stages when pioneers are replaced by
late-successional species (>30 years).

Within the composition component, as succession proceeds
there is an increase in species diversity and richness and a

replacement of indicator species and functional groups. Species
richness recovers to 90% of old-growth forest values within
31 years on average while species composition can take more
than 120 years or may never happen (Rozendaal et al., 2019).
Increment in species richness is very steep at early to intermedi-
ate successional stages and slows down at late stages (Rozendaal
et al., 2019). Overall successional changes in species composi-
tion are less predictable and can be extremely slow
(Rozendaal et al., 2019; Poorter et al., 2021). Therefore, we rec-
ommend that changes in the presence and abundance of indi-
cator species or specific groups of species are used in
assessments of successional changes. The replacement of pio-
neer species by late-successional species happens at intermedi-
ate successional stages for adult trees (Finegan, 1996), as
seedlings of late-successional species may be present from the
early stages (Guariguata&Ostertag, 2001; Peña-Claros, 2003).
SFs with lower EI will show slower species turnover and species
richness, and higher dominance by certain indicator species
and plant groups (Gehring et al., 2005; Styger et al., 2007;
Jakovac et al., 2016). These can be observed at all successional
stages by showing lower species richness, higher abundances
of non-tree life forms such as ferns, grasses, bamboos, vines,
and lianas, and higher dominance by certain indicator tree
species, compared to the reference trajectory (Gehring
et al., 2005; Styger et al., 2007; Letcher &Chazdon, 2009; Jako-
vac et al., 2016).

Within the structure component, during succession basal
area and biomass accumulate and consequently canopy
cover increases and herbaceous and shrub cover or abun-
dance are reduced (Guariguata & Ostertag, 2001;
Estrada-Villegas et al., 2020). Total basal area tends to sta-
bilize at intermediate successional stages while biomass
and horizontal heterogeneity stabilizes at intermediate to

Fig. 1. (A) Diagram illustrating the concept of ecological integrity (EI) applied to secondary forests (SFs). It shows the change in EI
over time and across different successional trajectories (green bands) arising from clear-cut forests and highlighting the optimal
successional trajectory (dark green band). Green bands with lighter colours represent trajectories with decreasing EI. We can assess
early, intermediate or late successional stages based on increasing levels of EI across time (A). In the upper portion of the graph
(grey band), we show the natural range of variation of EI that exists in mature reference forests (e.g. old-growth forests) that
represent the potential maximum EI that a site can achieve. In (B), we show different successional trajectories that may arise due
to limitations to succession or disturbances: (1) optimal successional trajectory; (2) temporal variations decreasing the recovery rate;
(3) rapid initial development, but stabilization in a suboptimal condition; and (4) positive initial recovery, but future degradation
resulting from a strong disturbance (e.g. pest outbreak or extreme drought).
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late successional stages (Poorter et al., 2021). As a conse-
quence of plant colonization and the increase in basal
area, canopy cover sharply increases and then stabilizes
within early successional stages. SFs with lower EI will
have lower average tree size and a more homogeneous
tree-size distribution, showing lower basal area, biomass
and canopy height and lower heterogeneity in tree size
[e.g. Gini index of basal area or diameter at breast
height (dbh)], compared to optimum reference trajectories
(Marin-Spiotta, Ostertag & Silver, 2007; Chazdon
et al., 2010; Jakovac et al., 2015; Mesquita et al., 2015;
Poorter et al., 2016; Rozendaal et al., 2019; Pérez-C�ardenas
et al., 2021). Landscape attributes, another commonly used
indicator of structure, are not directly associated with
successional changes, but can be used as proxies for the con-
ditions enabling succession in the landscape (Arroyo-Rodrí-
guez et al., 2017; Jakovac et al., 2021), and therefore can be
used as indirect indicators of EI across successional stages.

Within the function component, during succession rates of
tree growth decrease (Norden et al., 2015) and mortality
shows a hump-shaped relationship. Tree growth rates tend
to be higher at early to intermediate stages of succession
(Marin-Spiotta et al., 2007) due to the rapid growth rates of
pioneer and early secondary species (Chazdon et al., 2010).
Mortality rates tend to be higher at early to intermediate
stages due to thinning and the mortality of same-aged pio-
neer species but are reduced at late stages (van Breugel,
Martínez-Ramos & Bongers, 2006). Successional changes
in soil conditions are less predictable, probably due to a
dependence on geomorphological characteristics and the
conditions left after land use (which can increase or decrease
soil fertility, for example) (Powers & Marín-Spiotta, 2017).
However, recent studies suggest that soil nitrogen, carbon
stock and bulk density increase sharply and then stabilize
within the early stages of succession (Poorter et al., 2021;
van der Sande et al., 2023). SFs with lower EI will show slower
dynamics and therefore lower rates of tree growth and mor-
tality, and slower restoration of soil conditions, especially at
early to intermediate stages of succession.

(3) Suggested indicators for assessing the EI of
tropical SFs

Based on the list of indicators used most frequently in the liter-
ature (Table 3) and our evaluation criteria [known behaviour
across successional trajectories, ease of measurement (sam-
pling complexity and sampling frequency), methodological
approach and spatial scale] we present in Table 4 a list of indi-
cators for use in assessments of the EI of SFs. With this list,
researchers and practitioners can identify the combination of
indicators that best match their objectives and resources.

To evaluate the EI of SFs, at least one indicator for each
component of EI (composition, structure and function) should
be used. Across a range of characteristics, such indicators can
be easy tomeasure, for example requiring singlemeasurements
from field surveys and allowing assessments at local scale, or
they can be harder to obtain, requiringmultiple measurements

and remote-sensing techniques, but allowing assessments at
regional scales (Table 4). Remote-sensing approaches require
technologies that may not be available for local institutions,
but are essential for upscaling the classification and monitoring
of SFs, usually of interest for national governments and
research institutions. Field-based evaluations tend to require
less-specific technology and therefore are more accessible to a
wide range of professionals and institutions. Some field-based
indicators, such as species diversity, however, require expertise
in species identification, potentially restricting their application,
particularly in biodiversity hotspots. The list of indicators and
evaluation criteria presented in Table 4 thus will enable the
selection of indicators that are most suitable for different aims,
spatial and temporal scales and resource availability.
Based on this literature review and on expert knowledge, we

suggest a combination of the following indicators of composi-
tion and structure for assessing the EI of SFs at a local scale:
indicator species or species richness, canopy cover, basal area
and heterogeneity of basal area (or dbh). These indicators are
easy tomeasure in the field and their recovery is associated with
the recovery of function components, such as soil properties
and plant functional traits (Poorter et al., 2021). When using
remote-sensing techniques, structure indicators can be assessed
throughmetrics such as Leaf Area Index (LAI) andNormalized
Difference Vegetation Index (NDVI), especially during early
stages of succession (Table 4). For assessments of the EI of
SFs at a regional scale, we suggest the inclusion of landscape
structure indicators (e.g. landscape heterogeneity, landscape
connectivity), which are known proxies for the capacity for
recovery of composition, structure and function of SFs
(Arroyo-Rodríguez et al., 2017; Jakovac et al., 2021).
It is important to highlight that reference values are

required for two reference systems: a mature reference state
and an optimal successional trajectory. The reference values
of the optimal successional trajectory can be absolute values
(and therefore region specific) or determined relative to the
old-growth forest (and therefore comparable across regions).
Future studies should try to identify relative values of indica-
tors that can be used as an optimal successional trajectory in
multiple regions. In addition, we suggest identifying indicator
species and how patterns of species dominance change with
EI and successional stages, as well as evaluating other indica-
tors of function that are easier to assess in the field. Notably,
some indicators will be more appropriate for generalization
across regions (e.g. structure indicators) while others will be
region specific (e.g. indicator species), therefore a combina-
tion of both may allow better characterization of EI given
the heterogeneity of tropical plant communities.

V. ECOLOGICAL INTEGRITY, SOCIETAL
DEMANDS AND IMPLICATIONS FOR DECISION
MAKING

Ecological integrity is a concept applied to individual SF
patches through the characterization of their composition,
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structure, and function, providing information on the conser-
vation and restoration potential of individual SF patches.
From a societal perspective, however, the relevance of a SF
patch will depend on its socio-ecological context. Therefore,
the decision-making process on the socio-ecological value
(and fate) of SF patches depends on an evaluation that com-
bines the actual EI of a SF patch, the potential of a SF patch
to undergo succession (and increase its EI), its potential to
contribute to the resilience of the landscape as a whole, and
the societal demand for land use (e.g. agricultural produc-
tion, demand for ecosystem services).

From a socio-ecological perspective (Vieira et al., 2014;
Balvanera et al., 2021), the value of SF patches therefore will
greatly depend on the conditions of the landscape in which
they are found. For example, in a highly deforested and frag-
mented landscape, SF patches with high EI will have high
value for conservation and restoration, also contributing to
landscape connectivity. These SFs with high EI will harbour
high levels of biodiversity, contribute to ecosystem function-
ing and provide several ecosystem services including goods
for people (such as food and materials). In the same highly
fragmented landscape, SF patches with low EI may not have
a high value for conservation at the patch level, but might

play an important role for landscape connectivity and soil
protection given the impoverished conditions of the land-
scape. In this case, actively managing these low-EI patches
(e.g. climber cutting, invasive species control, enrichment
planting, exclusion of cattle grazing) could foster succession
and consequently increase their EI and the provision of eco-
system goods and services, also contributing to increased
resilience of the landscape. Enhancing natural regeneration
through management practices soon after agricultural aban-
donment is an easier and cheaper way of increasing its EI
compared to managing older SF patches (Rezende &
Vieira, 2019; Vieira et al., 2021). Such low-EI SF patches
could be managed for enhancing production through agro-
forestry, e.g. soil fertility or timber and non-timber produc-
tion, and thereby contribute to the societal needs and goals
for that specific landscape (Michon et al., 2007;
Chazdon, 2008; Diemont et al., 2011; Heinrich et al., 2021).

Therefore, the classification of the EI of a SF patch is only
one step in the decision tree for land-use planning and land-
scape restoration. It is important to consider the social, legal,
economic and political factors that influence the governance
of SFs (Vieira et al., 2014). To facilitate such discussions, we
highlight four properties that should be assessed in SF

Table 4. Suggested indicators for use in assessments of the ecological integrity of tropical secondary forests and evaluation
criteria used to classify each indicator: successional stage ( early, intermediate, late); sampling complexity ( easy, medium,
hard); sampling frequency required ( single, multiple); methodological approach ( field based, remote sensing); and spatial
scale ( local, regional).

Indicator name Indicator metrics suggested Stage Complexity Frequency Approach Scale

Composition
Species diversity or
richness

Species diversity or richness

Indicator species or
group

Indicator species presence/abundance (e.g.
successional groups, exotic species)

Structure
Tree size and biomass Tree basal area (total)

Tree basal area variation (e.g. standard
deviation or Gini index)

Leaf Area Index (LAI)
Normalized Difference Vegetation Index
(NDVI)

Canopy cover and
structure

Canopy cover (% ground cover)

Herbaceous or shrub
cover or abundance

Ground vegetation cover (e.g. grass or light-
demanding herbs)

Landscape composition
and heterogeneity

Landscape composition (land-use and land-
cover types)

Landscape connectivity
and fragmentation

Landscape connectivity or fragmentation

Function
Tree growth and
mortality

changes in tree abundance or basal area

Tree growth and mortality
Vegetation condition
and damage

Tree condition or damage (e.g. defoliation,
damage to branches)

Soil physical and/or
chemical parameters

Soil organic matter, soil nitrogen content, bulk
density
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patches to support decision-making on land-use planning: (i)
the current EI of the SF – the higher its EI, the higher will be
its conservation value; (ii) current provision of ecosystem ser-
vices and societal needs – a better match between ecosystem
services provided and societal needs, the higher will be the
value of preserving and/or managing that SF patch; (iii) the
role of the SF patch in the functioning and resilience of the
landscape; and (iv) the trade-offs and synergies with local
and regional societal demands. The combination of these
four aspects should be considered in decision making for
land-use planning in order to determine whether to conserve,
manage or convert SF patches.

VI. CONCLUSIONS

(1) This study reviews the concept of EI and proposes adap-
tation of the concept to incorporate the temporal dynamics of
recovering ecosystems such as SFs. We propose that the
assessment of the EI of SFs uses two reference systems: a
mature reference forest and an optimal successional trajec-
tory. The mature forest is used to retrieve relative reference
values, and the optimum successional trajectory serves as a
reference for the maximum EI attainable at each age class
or successional stage in a given region. The use of an optimal
successional trajectory as a reference enables the evaluation
of EI at any age class and successional stage.
(2) We provide a list of indicators that can be used to assess
the EI of SF patches at different successional stages and asso-
ciate them with the provision of ecosystem services. By detail-
ing a list of indicators for assessing EI, we provide strategies
for field and remote-sensing assessments and monitoring of
forest recovery and restoration.
(3) Finally, we highlight that the socio-ecological value of SF
patches extends beyond EI alone and might include the eco-
system services provided in their individual landscape con-
texts and for local societal demands and needs. SFs are seen
variously as degraded forests by conservationists, as promis-
ing areas for forest restoration by restoration practitioners
and researchers, as fallows by shifting cultivation farmers,
and as an opportunity for agricultural intensification by agri-
business. Assessing the EI of SFs will help to identify their
conservation value, and combined with a socio-ecological
assessment will assist informed decisions on the fate of
tropical SFs.
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Pérez-C�ardenas, N., Mora, F., Arreola-Villa, F., Arroyo-Rodrı́guez, V.,
Balvanera, P., Flores-Casas, R., Navarrete-Pacheco, A. & Ortega-

Huerta, M. A. (2021). Effects of landscape composition and site land-use
intensity on secondary succession in a tropical dry forest. Forest Ecology and

Management 482, 118818.
†Perles, S. J., Wagner, T., Irwin, B. J., Manning, D. R., Callahan, K. K. &
Marshall, M. R. (2014). Evaluation of a regional monitoring program’s
statistical power to detect temporal trends in forest health indicators. Environmental
Management 54, 641–655.
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IX. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1. List of 41 references obtained from search #1 in
Web of Science, using search terms associated with the concept
of ecological integrity, and the additional six references
sourced from citations within these references.

Table S2. List of 72 references obtained from search #2 in
Web of Science, using search terms related to indicators used to
evaluate ecological integrity.
Table S3. Information associated with indicators used to
evaluate ecological integrity (EI) that was taken from the
papers selected from search #2.
Table S4. Indices used to assess overall ecological integrity
of forests.
Table S5. List of indicator metrics used in assessments of
ecological integrity.
Appendix S1. Excel spreadsheet with the full database from
search #2 (raw data).
Appendix S2. Excel spreadsheet with full list of indicators
and evaluation criteria and their associations with ecosystem
services.
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