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A B S T R A C T   

Cassava (Manihot esculenta Crantz) and its by-products (cassava flour from the dry and water groups, tapioca, 
tarubá, tucupi and leaves) can bring risks to health and contamination of environmental compartments, due to the 
release of free cyanide (CN− ) and/or hydrocyanic acid (HCN) contents from cassava processing. However, the 
use of bioremediation with native microorganisms isolated from cassava wastewater is an alternative, 
economical and sustainable technology that could reduce health and environmental risks. Therefore, this work 
aimed to review the effects of ingesting cyanide-contaminated cassava and the main microorganisms that can 
bioremediate cyanide in cassava processing effluents.   

1. Introduction 

Cassava (Manihot esculenta Crantz) is important for traditional 
communities in some countries, including the Legal Amazon region in 
Brazil, due to its socioeconomic relationships linked to family farming, 
food security, practicality and simplicity in production even under 
adverse conditions [1,2]. In the different cassava varieties, cyanogenic 
glycosides are found, which may vary according to the variety, plant age 
and soil and climatic conditions, contaminating the environment and 
harming human health [3–7]. Human exposure and the risks generated 
by cyanide (CN− ) contained in cassava roots, occur mainly through 
inadequate consumption of cassava, without proper cooking [8–10], 
which can cause several clinical manifestations, from mild to severe, 
such as headache, nausea, vomiting, dizziness, mental confusion, hy-
pertension, dyspnea, fixed and non-reactive pupils, difficulty breathing, 

cardiovascular problems, and loss of consciousness [3,9,11,12]. The 
effects of CN− in the human organism are immediate such as the inhi-
bition of the antioxidant defense against free radicals in the cells, the 
alteration of cellular ion homeostasis (alteration of the processes and 
reactions necessary for the maintenance of the living organism) and the 
inhibition of cellular respiration [13]. During the cassava processing the 
roots are crushed and pressed, in which, the solid part will serve for the 
production of flour and the liquid part (manipueira), will serve for tucupi 
production (obtained after spontaneous fermentation in environmental 
conditions and cooking) [14]. The manipueira when poured incorrectly, 
generates chemical and physical alterations, due to the bioavailability of 
the organic material and CN- contaminating the environmental com-
partments [15]. Thus, even containing toxic substances in cassava ef-
fluents, we can find microbial diversity such as Bacillus spp. and 
Pseudomonas aeruginosa, which may be beneficial in terms of 
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Campus Guamá, 01, 66075-110 Belém, Pará, Brazil. 
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bioremediating the CN− present in these effluents [16,17]. Therefore, 
the objective of this review was to present the effects of the ingestion of 
CN− by the consumption of cassava and its by-products, as well as the 
microorganisms used to reduce the cyanide present in the effluents of 
cassava processing. 

2. Cyanide: Sources and toxic forms 

The main sources of CN− come from metal mining processes, organic 
chemical industries, pharmaceuticals, plastics, iron and steel plants, 
wastewater treatment, vehicle exhaust, burning of solid waste, landfills, 
pesticides, microorganisms (bacteria, fungi, and algae), and naturally in 
various foods and plants such as cassava [3]. Cyanide, is an easily 
bioavailable substance in different environmental compartments (soil, 
water and air) and therefore it is the subject of several socio- 
environmental discussions [3,6], as in the Amazon, with the extrac-
tion of gold by the Mining and illegal mining [18,19]. The availability of 
CN− in the environment occurs through processes of complexation, 
precipitation, adsorption, formation of cyanate (CNO− ) and thiocyanate 

(SCN− ), volatilization, biodegradation, and hydrolysis [6,20]. In the 
soil, CN− binds strongly to the organic and inorganic constituents of the 
soil (aluminum, iron and manganese oxides, certain types of clay, feld-
spar, and organic carbon) by adsorption, being able to form HCN, the 
most toxic form, and cyanate and thiocyanate less toxic forms [21]. 
Hydrogen cyanide in the soil evaporates and other cyanide compounds 
are formed, which in high concentrations are toxic to microorganisms 
[3]. Thiocyanate is formed in soil when CN− binds to different species 
present such as free sulfur, mineral sulfides such as chalcopyrite 
(CuFeS2), chalcocite (Cu2S) and pyrrhotite (FeS), polysulfides and 
thiosulfates [21]. The CN− toxicity may vary due to intensity of sunlight 
radiation or ultraviolet radiation (hv), when bound to iron in the soil. In 
the absence of sunlight or ultraviolet radiation, ferrocyanide [Fe(CN)6

4− ] 
decomposes to form ferricyanide (a less toxic substance) in a slow pro-
cess as can be seen in Eq. 1. In the presence of light, ferricyanide forms 
volatile and highly toxic hydrogen cyanide according to Eq. 2 [3,22]. 

Fe(CN)63− + 6H2O+ 3H+ ↔ Fe(OH)3(s)+ 6HCN(aq) (1)  

Fig. 1. Processes of cyanide transformation in water and soil. 
Adapted from Jaszczak et al. [22] with adaptations. 
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Fe(CN)64− + hv→Fe(CN)63− +CN− (2) 

In the environment, cyanide undergoes several transformations 
(Fig. 1), which result in processes that occur in water and soil [22]. Due 
to the abundance of iron in soils and sediments, complexed cyanide 
when exposed to sunlight releases free cyanide into the aquatic envi-
ronment [6]. On aquatic surfaces, the toxic action of CN− varies ac-
cording to pH, and may be present in the form of various salts (more 
toxic complexes and more soluble in water) such as sodium cyanide 
(NaCN), potassium cyanide (KCN), calcium cyanide (CaCN2) and mer-
cury cyanide (HgCN) and less soluble forms such as copper cyanide 
(CuCN), zinc cyanide (ZnCN2), nickel cyanide (NiCN2) and silver cya-
nide (AgCN) [22]. In the atmosphere, CN− is in the form of gas, HCN and 
fine dust particles, being removed in approximately 1 to 3 years [3]. 

3. Cyanide in cassava 

Cassava is a weather-tolerant plant (droughts, pests, etc.) and has 
great nutritional potential (carbohydrates, proteins, sodium, lipids, 
minerals as magnesium, calcium, iron, and some vitamins) [23,24]. 
However, depending on the variety (meek or brave), linamarin and 
lotaustralin can be toxic since they are cyanogenic glycosides in the 
concentrations of 92 to 98 % and 2 to 8 %, respectively [7]. This toxicity 
depends on the conditions of climate, cultivation, growth, age, and 

consumed parts of cassava (leaves, stalks, and roots) [22,25]. Therefore, 
it is important to follow all stages of the cassava production chain, in 
order to obtain the correct processing of the roots and leaves in the 
artisanal manufacture of flour and other by-products (Fig. 2). 

During the artisanal processing of dried cassava flour, in the phase of 
pressing the cassava mass, a liquid called manipueira is generated, which 
has a polluting power because it contains cyanogenic glycosides. After 
fermentation and boiling of the manipueira, it is possible to obtain the 
tucupi, yellow liquid containing catotenoids, fermented spontaneously 
by lactic bacteria that produces biogenic amines (tyramine and hista-
mine), used in the preparation of regional foods and presents the po-
tential of gas production [14,26–28]. The production steps of cassava 
flour, solid and liquid residues are generated, which can be expressed in 
mass balance, with utilization of these residues using clean technologies 
(Fig. 3). 

According to the amount of kilograms of roots used for the produc-
tion of cassava flour, the percentage of residues generated are about 18 
% of peels, 30 % of manipueira, and 24 % of crueira (insoluble fraction 
retained on grid) and water loss through evaporation [29]. During root 
processing, the cyanogenic glycosides present in the vacuoles of plant 
tissue, when they suffer rupture, release HCN. This disruption occurs 
through the enzyme linamarase (β-glucosidase) for linamarin hydrolyses 
and initiates the chemical reaction to form glucose and cyanohydrin. 

Fig. 2. Cassava production chain and its by-products in the Northern Brazil region. 
Adapted from Chisté et al. [30]*, FAO and WHO [42], Cruz et al. [53], Campos et al. [54]** and Lima et al. [55]. 
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The cyanohydrin can be dissociated by the enzyme hydroxynitrile lyase 
or by spontaneous processes that form hydrocyanic acid and acetone 
(Fig. 4) [30–32]. Table 1 shows previous studies that reported cyanide 
concentrations in edible parts of the cassava plant and its by-products. 

Although cyanogenic glycosides have toxic effects, they are being 
used in mice for beneficial research, due to their biological properties 
(bioavailability, solubility and stability) that have antitumor effects such 
as amygdalin and linamarin/linamarase, being used to fight bladder, 
colorectal, liver, ovarian, breast and cervical adenocarcinoma cancers 
[33,34]. In the case of amygdalin, it acts in reducing glutathione 
reductase activity and elevates levels of reactive oxygen species (ROS), 
which at higher levels, suppresses cytochrome C oxidase activity in the 
electron transport chain, acting as a cytotoxic agent and leading to 
apoptosis of the cancer cell [34]. 

4. Cyanide in the human organism 

HCN is a toxic and fast-acting substance and its acute (14 days or 
less), intermediate (15 to 364 days) or chronic exposure (365 days or 
more) will depend on the amount of the dose and the duration of time, 
when absorbed orally, dermally, ocularly or by inhalation [3]. The 
estimated minimum lethal oral exposure dose of HCN is 0.5 to 3.5 mg/kg 
per body weight [13]. Cyanide has great affinity for metalloproteins 
(about 40 enzyme systems) such as cobalt (Co) and ferric ion (Fe3+) in 
methemoglobin, and cytochrome oxidase and ferrous ion (Fe2+) in he-
moglobin [3,28]. In addition to binding to cytochrome c oxidase, cya-
nide can contribute to signs of intoxication due to inhibition of catalase, 
peroxidase, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid 
oxidase, xanthine oxidase, and succinic dehydrogenase activities [3]. 
The inhibition effect of cellular respiration and the Fe atom interaction 
with CN− can be demonstrated in Fig. 5. The cyanide, with a high af-
finity for the ferric ion (Fe3+), binds strongly to the ferric ion of 

Fig. 3. Mass balance (kg) of the main steps in the production of cassava flour and the utilization of solid and liquid residues using clean technologies. 
Adapted from Sebrae [29], Cruz et al. [53], Lima et al. [55] and Jekayinfa and Olajide [56]. 
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cytochrome oxidase, forming a relatively stable mitochondrial complex 
called cyano-cytochrome oxidase, which blocks oxidative phosphoryli-
zation (interrupts the transport of electrons in the respiratory system by 
inhibiting the formation of oxygen, ATP and energy). Consequently, 
tissue anoxia occurs, which prevents hemoglobin oxygen from being 
used in cellular respiration [3,26]. 

Therefore, regardless of the different exposure routes, health is 
harmed (Fig. 6). The continuous ingestion of cassava and its by- 
products, when processed incorrectly (without cooking, drying or fer-
menting properly), brings a series of problems to human health, causing 
intoxications and the emergence of clinical signs such as mental 
confusion, muscle paralysis, difficulty breathing, headache, vertigo, 
blood disorders, thyroid gland enlargement, damage to the brain, cen-
tral nervous system, heart and kidneys, nausea, vomiting, diarrhea, 
abdominal pain, acidemia, heart failure, pulmonary edema, dyspnea, 
bradycardia, hyperlactatemia, hypotension, apnea, seizures, coma, 
opisthotonos, trismus, mydriasis or even death [3,9,35,36]. 

An outbreak in Kasese county, Uganda in 2017 left 95 people 
intoxicated by ingesting cassava flour with a concentration of 88 mg / 
kg, corresponding to 8 times higher than the World Health Organization 
recommends (10 mg / kg). The main signs and symptoms detected were 
vomiting (95 %), diarrhea (87 %), malaise (60 %), dizziness (48 %), 
tachypnea (27 %), syncope (16 %), tachycardia (10 %) and fever (6 %), 
with two deaths [37]. Around 143 cases were reported from January 
2017 to May 2018, due to intoxication by plants, of which 21 were due 

to the ingestion of cassava by children and adolescents, obtaining one 
death and the rest progressed to cure [38]. One child ingested a large 
amount of uncooked cassava, presenting hours later with acute en-
cephalopathy with signs of mental confusion, drowsiness, vomiting, and 
cardiac arrest [20]. Healthy adults (12) consumed (acute exposure) 
pieces of fresh cassava roots (76–150 mg / kg) with an average of 113 
mg / kg and the mass of cassava (90–45 g) with an average of 64 g. 
Consumption occurred in a single meal, where each piece of cassava 
contained 6.8 mg / kg of cyanide, obtaining an average blood concen-
tration of 15.4 μM of cyanide after 37.5 min of ingestion. Only two 
subjects reached peaks of 21.5 μM and 31.9 μM after cassava con-
sumption, but there were no clinical signs and symptoms of cyanide 
intoxication [8]. Workers involved in flour production were investigated 
for environmental and biological exposure to cyanide in the state of 
Alagoas, Brazil. Of the 36 workers analyzed, the concentration of CN in 
the air ranged from 0.235 to 7.77 mg HCN/ m3, in which five samples 
were 50 % above the exposure limit of 5 mg /m3 [39]. Regardless of the 
route of exposure, small amounts of cyanide (in the form of a gas or salts) 
can cause health problems (at levels of 0.05 mg / dL or higher) or death 
(at levels of 0.3 mg /dL or higher). The toxicity of CN depends on the 
amount, time (duration), the form of exposure, personal characteristics, 
and habits, in addition to the presence of other chemical substances. 
People exposed to 546 mg / kg HCN for ten minutes and 110 mg/kg HCN 
by 1 h died [3]. 

5. Cyanide exposure biomarkers 

Biomarkers are classified as exposure, effect or susceptibility 
markers, they are indicators that are signaled by biological systems or 
through environmental samples [3]. In the human body, the amount of 
cyanide can be quantified by the internal dose of thiocyanate (Table 2) 
through blood, urine, saliva, tissues or plasma [3,40]. 

Exposure to cyanide in the human organism can be exacerbated due 
to the individual's genetic makeup, age, health and nutritional status, 
and exposure to other toxic substances. Populations most exposed to 
cyanide (CN− ) and thiocyanate (SCN− ) include active smokers and 
passive smokers, those who consume foods rich in cyanogenic glyco-
sides, and people who live near industries and hazardous waste deposits, 
inhale gases from fires, apply pesticides, and work in research labora-
tories among others [3]. In 2014, the Information System for Notifiable 
Diseases (SINAN) of the Brazilian Ministry of Health registered around 
90.000 cases of intoxication, which 3.4 % were related to intoxication by 
chemical products. Consequently, it was created a clinical protocol with 
therapeutic guidelines for the use and treatment of hydroxocobalamin in 
patients exposed to or intoxicated by cyanide in its acute form [11]. 

Fig. 4. The action of β-glucosidase and hydroxynitrile lyase enzymes on Linamarin (95 % of cyanogen glycoside present in cassava) responsible and the release of 
cyanide. 
Adapted from Pereira et al. [57]. 

Table 1 
Cyanide concentrations in edible parts of cassava and its by-products.  

Cassava/by-products Cyanide concentration range (mg/kg) Reference 

Bitter leaves 1067.8–2330.2 [25] 
Cassava flour from dry group 7.7–20.6 [58] 

5.0 [30] 
16.0–27.0 [59] 

Dry leaves 85.0 [60] 
Cassava flour from water 

group 
3.6–12.4 [58] 

Fresh leaves 800–1600.0 
7.3–33.2 (after 10 months of 
cultivation) 

[60] 

Roots 7.6–33.4 (after 12 months of 
cultivation) 

[57] 

16.0–1212.0 [61] 
Sheets 346.0–748.4 [61] 
Sweet leaves 386.4–1317.6 [25] 
Water flour 9.0 [58] 

6.0–10.0 [59] 

(Source: summarized by the authors.) 

A.C. Maciel et al.                                                                                                                                                                                                                               



Journal of Water Process Engineering 55 (2023) 104079

6

6. Cyanide legislation 

International agencies such as the Agency for Toxic Substances and 
Disease Registry (ATSDR), the WHO, and the Food and Agriculture 
Organization of the United Nations (FAO) conducted meetings to discuss 
and propose new solutions related to the safety, quality, and marketing 
of cassava and its by-products. Guidelines related to the prevention and 
reduction of hydrocyanic acid were also proposed [3,35]. The regula-
tions in some countries as Brazil, Nigeria and some of the European 
Union (Table 3) show us that the precaution for the intoxication by 
cyanide is real and necessary. 

For the European Union, the maximum permissible content of hy-
drocyanic acid, including hydrocyanic acid linked to cyanogenic gly-
cosides, should be 50 mg / kg for cassava root (fresh, peeled) and 10 mg 
/ kg for cassava flour and tapioca flour [41]. Regarding cassava flour, the 
WHO defined the level of 10 mg HCN/ kg as safe in relation to cyanide. 
Therefore, as there are no specific regulations in Brazil for cassava and 
its derivatives (roots, leaves, flour, tucupi and starch), which are ingested 
by the population, the same safety limit as the lethal dose (LD50) rec-
ommended by the WHO is adopted [42]. The new Consolidation Ordi-
nance of the Ministerial Office of the Brazilian Ministry of Health [43], 
which provides for the control, monitoring, quality and standard of 
potability of water for human consumption, did not include the sub-
stance cyanide, which was included in the former Consolidation 

Ordinance n◦ 5/2017, with a maximum allowed value of 0.07 mg / L 
[43,44]. Thus, the recommendations of the United States Environmental 
Protection Agency (EPA) and WHO must be adopted, for drinking water 
the maximum value for nitrate is 10 mg / L, for Nitrite is 1 mg / L and for 
cyanide (as free cyanide) it is of 0.2 mg / L, and for air we have cyanide 
(as CN) of 5 mg / m3 and hydrogen cyanide of 11 g / m3. In the case of 
inhalation, exposure concentrations will be expressed in mg /L for gases 
and volatiles and mg /m3 for suspended particles. For oral ingestion, 
concentrations will be expressed in mg / kg / day as daily human doses, 
with a minimum risk level of 0.05 mg /kg/day [3]. Faced with the risk of 
cyanide poisoning, the Brazilian Ministry of Health approved the Ordi-
nance of the Unified Health System [45]. 

7. Microbial diversity in cyanide removal in cassava effluents 

Some microorganisms develop the skill to degrade nitriles (nitrilase, 
nitrile hydratase and amidase) and cyanides in contaminated environ-
ments, according to the Table 4. 

The biodegradation of cyanide under aerobic conditions causes the 
microorganisms to consume HCN and generate hydrogen cyanate 
(HCNO), being transformed into ammonia and carbon dioxide through 
hydrolysis. The anaerobic biodegradation of cyanide and HCNO, it only 
occurs in the presence of hydrogen sulfide (H2S) and at pH > 7.0 
(dominant species) or pH < 7.0 (prevalent species), being slower [17]. 

Fig. 5. Inhibition of cellular respiration by cyanide in the structure of the cytochrome C oxidase protein oxidase. 
Adapted from Brazil [12]. 
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Luque-Almagro et al. [28] reported that, under anaerobic conditions, 
the residual effluents of cassava fermented in a fixed bed methanogenic 
reactor converted all the cyanide into organic nitrogen by the biomass. 
In a two-step reactor (equilibrium/pre-acidification reactor followed by 

methane reactor), cyanide was removed under ideal conditions (pH 6.0 
to 7.5, temperature 25 to 37 ◦C) generating ammonia and formic acid. 
Razanamahandry et al. [46] showed that cyanide-degrading bacteria 
isolated from mining wastewater and wastewater containing thiocya-
nate, had satisfactory performances, with thiocyanate effluent bacteria 
showing higher biodegradation rates 2.114 g CN− .L− 1 .O.D600nm − 1 . 
h− 1 compared to those isolated from mining effluent 1.209 g CN− .L− 1 . 
O.D600nm − 1.h− 1. Some bacteria species were identified as Pseudo-
monas spp, Acinetobacter spp, and Proteus sp. were capable of bio-
remediating cyanide contained in cassava effluents. Some techniques 
are used to identify the bacteria, such as the polymerase chain reaction 
(PCR), molecular identification technique and the staining technique, 
which allows separating of bacteria into Gram-positive and Gram- 
negative groups [47,48]. This last technique requires care, as there are 
different types of bacteria species with the same morphology and 
metabolism [48]. Vallenas-Arévalo et al. [49] isolated native cyanide- 
degrading bacteria in cassava effluents in Santa Maria da Serra city 
(Brazil), containing 305 mg/L of free cyanide with a reduction between 
10 and 27.5 % after 72 h of incubation. In this study, there was no 
molecular identification of the studied strains. These same authors 
brought several studies that report the ability of different microorgan-
isms to degrade from 60 to 100 % of cyanide. Nwakoby et al. [50] 
analyzed cassava effluent samples, obtaining a microbial population of 
Staphylococcus aureus, Bacillus spp, Streptococcus spp, Pseudomonas aeru-
ginosa, Aspergillus spp, and Candida spp. Among these microorganisms, 
Bacillus spp. and P. aeruginosa had the ability to degrade cyanide. Table 5 
shows some microorganisms capable of degrading cyanides. 

In the case of bacteria, some have several metabolic pathways 
capable of cyanide degradation, in which, these routes are based on 

Fig. 6. Schematic of the impact of cyanide on the human body. 
Adapted from Jaszczak et al. [22] with adaptations. 

Table 2 
Analytical methods in the determination of biomarkers for thiocyanate.  

Biological 
material 

Method analytical Detection 
limit 

Reference 

Serum Flame atomic absorption spectrometry 4 ng/mL [62] 
Spectrometry 0.3 μg/mL [63] 

Spittle Flame atomic absorption spectrometry 4 ng/mL [62] 
Gas chromatography with electron 
detection 

0.0115 
nmol 
(in 0.2 mL) 

[64] 

Chromatography using octadecyl 
silane on a column coated with 
cetyldimethylamine with detection of 
UV absorption (210 nm) 

20 ng/mL [65] 

Urine Flame atomic absorption spectrometry 4 ng/mL [62] 
Gas chromatography with electron 
detection 

0.0115 
nmol 
(in 0.2 mL) 

[64] 

Chromatography using octadecyl 
silane on a column coated with 
cetyldimethylamine with detection of 
UV absorption (210 nm) 

20 ng/mL [65] 

Spectrometry 0.3 μg/mL [63] 
Suppressed ion chromatography with 
conductivity detection 

200 nM [66] 

Source: ATSDR [3] with adaptations. 
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enzymatic processes such as hydrolytic, oxidative, reductive and sub-
stitution/transfer reactions (Fig. 7), e.g. Pseudomonas pseudoalkaligenes 
CECT5344 and Pseudomonas aeruginosa Rhodanese [51,52]. 

8. Final considerations 

Understand that, in the artisanal processing of cassava, may cause 
risks to the environment and human health (ingestion of cassava and its 
derivatives containing cyanide), due to high affinity with metal-
loproteins that can be solubilized and/or bioavailable in different 
environmental compartments by processes of complexation, precipita-
tion, adsorption, volatilization, biodegradation and hydrolysis. It is 
relevant the development of biotechnological researches that use alter-
native sustainable techniques capable of significantly reducing the risks 
of exposure and contamination by cyanide. Thus, this review pointed 
out new perspectives of biosustainable researches using different gram- 
positive bacteria (Bacillus sp. EBE-2, Bacillus pumilus, Bacillus safensis 
PER-URP-08, Rhodococcus rhodochrous BX2, Bacillus subtilis N4/pHTnha- 
ami and Rhodococcus erythropolis ACN1) and gram-negative (Acineto-
bacter courvalinii, Pseudomonas pseudoalcaligenes CECT5344, Pseudo-
monas putida, Agrobacterium tumefaciens SUTS 1, Pseudomonas monteilii 
SUTS 2, Variovorax boronicumulans ACN2, Pseudomonas konensis ACN4, 
Pseudomonas konensis ACN7, Pseudomonas sp. ACN5 and Pseudo-
monas sp. ACN8) cyanide bioremediators. 

Compliance with ethical standards 

This review article does not contain any studies with human or 

Table 3 
Regulations dealing with the maximum permissible limits of cyanide in envi-
ronmental compartments in Brazil, Nigeria and the European Union.  

Environmental 
compartments 

Cyanide concentration 
[CN] 

Country Reference 

Water Superficial Free cyanide 0.005 mg/L 
(Class 1 and 2 - sweets) 

Brazil [67] 

Free cyanide 0.022 mg/L 
(Class 3 - sweets) 
Free cyanide 0.001 mg/L 
(Class 1 - salt flats) 
Free cyanide 0.001 mg/L 
(Class 2 - salt flats) 
Free cyanide 0.001 mg/L 
(Class 1 - brackish) 
Free cyanide 0.001 mg/L 
(Class 2 - brackish) 
Cyanide (as CN) 0.2 mg/L Nigeria [68] 

– Cyanides (expressed in 
total CN) 50 kg/year 

European 
Union 

[41] 

Human Cyanide 50 μg/L 
Effluent Release Total cyanide 1.0 mg/L Brazil [69] 

Free cyanide (distillable 
by weak acids) 0.2 mg/L 
Cyanide (as CN) 2.0 mg/L 
- Public Sewer 

Nigeria [68] 

Cyanide (as CN) 0.2 mg/L 
- Marine Disposal 
Cyanide (as CN) 0.1 mg/L 
- mining and processing of 
coal, ores and industrial 
minerals) in surface water 
Cyanide and its 
compounds dissociable by 
weak acid 10 ppm 

European 
Union 

[41] 

Soil  Cyanide 5 mg/kg (dry 
weight) - for chemicals, 
Pharmaceuticals, Soaps 
and Detergents 

Nigeria [68]   

Hydrogen Cyanide 2 mg/ 
N/m3 - Petroleum-based 
and chemical industries   
Cyanide and its 
compounds dissociable by 
weak acid 10 ppm   
Cyanide (expressed in 
total CN) 50 kg/year 

European 
Union 

[41] 

Air (Maximum 
degree of 
insalubrity) 

Hydrocyanic acid 8 mg/L 
or 0.009 mg/L - up to 48 
h/week (inhalation or 
skin absorption) 

Brazil [35] 

Methyl Cyanide and 
Acetonitrile 30 mg/L or 
0.055 mg/L 
Acrylonitrile and Vinyl 
Cyanide 16 mg/L or 
0.035 mg/L - up to 48 h/ 
week (inhalation or skin 
absorption) 
Cyanogen compounds 8 
mg/L or 0.016 mg/L 
2,4 Toluene diisocyanate 
and Toluene-2,4- 
diisocyanate 0,016 mg/L 
or 0.00011 mg/L 

Air – Cyanide 10 mg/N/m3 - air 
emissions for textiles, 
clothing, leather and 
footwear industry 

Nigeria [68] 

– Hydrogen cyanide 0.01 
mg/m3 - long-term 
emissions of specific 
pollutants (24 h) 

– Hydrogen cyanide (HCN) 
200 kg/year 

European 
Union 

[41]  

Table 4 
Nitrile and cyanide-degrading bacteria.  

Degrades Bacteria Reference 

Cyanide Pseudomonas pseudoalcaligenes CECT5344 [70,71] 
Bacillus sp. EBE-2 [72] 
Acinetobacter courvalinii [73] 
Bacillus pumilus and Pseudomonas putida [74] 
Agrobacterium tumefaciens SUTS 1 and Pseudomonas 
monteilii SUTS 2 

[75] 

Bacillus safensis PER-URP-08 [76] 
Nitrile Rhodococcus rhodochrous BX2 [77] 

Bacillus subtilis N4/pHTnha-ami [78] 
Rhodococcus erythropolis ACN1, Variovorax boronicumulans 
ACN2 and Pseudomonas konensis ACN4, Pseudomonas 
konensis ACN7, Pseudomonas sp. ACN5, and Pseudomonas 
sp. ACN8 

[79]  

Table 5 
Percentage of cyanide biodegradation by different microorganisms.  

Microorganism [CN]start 

(mg/L) 
(%) 
Removal 
[CN] 

[CN]last 

(mg/L) 
Reference 

Pseudomonas parafulva  200  94  12 [80] 
Pseudomonas 

pseudoalcaligenes CECT 
5344  

0.6  100  0 [81] 

Bacillus sp.  300  97  9 [82] 
Bacillus sp., Bacillus, 

Klebsiella, Providencia 
and Pseudomonas  

250  97  7.5 [83] 

Bacterial consortia  80  95  4 [84] 
Bacillus sp. M01 PTCC 

1908  
651  86.4  88.7 [85] 

Pseudomona aeruginosa  1352  97.1  38.98 [86] 
Escherichia coli  1352  75.95  325.1 [86] 
Aneurinibacillus 

tyrosinisolvens JK-1  
10  99.8  0.02 [87]  
20  97.9  0.42  
30  96.6  1.02 

Bacillus subtilis  500  100  0 [88]  
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[28] V.M. Luque-Almagro, P. Cabello, L.P. Sáez, A. Olaya-Abril, C. Moreno-Vivián, M. 
D. Roldán, Exploring anaerobic environments for cyanide and cyano-derivatives 
microbial degradation, Appl. Microbiol. Biotechnol. 102 (2018) 1067–1074, 
https://doi.org/10.1007/s00253-017-8678-6. 

[29] Sebrae., Reference manual for flour mills: good manufacturing practices 
environmental diagnosis health and safety at work, in: Brazilian Support Service 
for Micro and Small Enterprises. Ergonomics Architectural Project, Sebrae, 
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[52] M. Roldán, A. Olaya-Abril, L. Sáez, P. Cabello, V. Luque-Almagro, C. Moreno- 
Vivián, Bioremediation of cyanide-containing wastes: the potential of systems and 
synthetic biology for cleaning up the toxic leftovers from mining, EMBO Rep. 22 
(2021) E53720, https://doi.org/10.15252/embr.202153720. 

[53] R. Cruz, H.H.P. Ribeira, A.R. Fernandes, C.A.B. Silva, Cassava processing (dry flour, 
scraps and starch-two projects in different sizes: 5 and 20 t/day), in: Projects of 
Agro-Industrial Enterprises-Products of Vegetable Origin, 1th. ed, Publisher UFV, 
2003, pp. 1–55. 

[54] A.P.R. Campos, R.A. Mattietto, A.V. Carvalho, Optimization of parameters 
technological to process tucupi and study of product stability, Food Science and 
Technology 39 (2019) 365–371, https://doi.org/10.1590/fst.30817. 

[55] L.S.C. Lima, D. Moreti, L.J. Lima, in: J.L.A. França (Ed.), Cassava Processing in the 
State of Mato Grosso, Empaer-MT, Cuiabá, 2020, pp. 1–108. 
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