



# Article Essential Oil Composition and DNA Barcode and Identification of Aniba species (Lauraceae) Growing in the Amazon Region

Júlia Karla A. M. Xavier <sup>1</sup><sup>(D)</sup>, Leonardo Maia <sup>1</sup>, Pablo Luis B. Figueiredo <sup>2</sup><sup>(D)</sup>, Adriana Folador <sup>3</sup>, Alessandra R. Ramos <sup>4</sup><sup>(D)</sup>, Eloísa H. Andrade <sup>5</sup>, José Guilherme S. Maia <sup>6</sup><sup>(D)</sup>, William N. Setzer <sup>7,8</sup><sup>(D)</sup> and Joyce Kelly R. da Silva <sup>1,8,\*</sup><sup>(D)</sup>

- <sup>1</sup> Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-900, Brazil; julia.xavier@icen.ufpa.br (J.K.A.M.X.); leo\_henriquemaia@hotmail.com (L.M.)
- <sup>2</sup> Departamento de Ciências Naturais, Centro de Ciências Sociais e Educação, Universidade do Estado do Pará, Belém, PA 66050-540, Brazil; pablo.figueiredo@uepa.br
- <sup>3</sup> Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA 66075-900, Brazil; adrianarc@ufpa.br
- <sup>4</sup> Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil; rezende@unifesspa.edu.br
- <sup>5</sup> Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, PA 66040-170, Brazil; eloisa@museu-goeldi.br
- <sup>6</sup> Programa de Pos-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA 64080-040, Brazil; gmaia@ufpa.br
- <sup>7</sup> Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; wsetzer@chemistry.uah.edu
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA
- Correspondence: joycekellys@ufpa.br

Abstract: Lauraceae species are widely represented in the Amazon, presenting a significant essential oil yield, large chemical variability, various biological applications, and high economic potential. Its taxonomic classification is difficult due to the accentuated morphological uniformity, even among taxa from a different genus. For this reason, the present work aimed to find chemical and molecular markers to discriminate Aniba species collected in the Pará State (Brazil). The chemical composition of the essential oils from Aniba canelilla, A. parviflora, A. rosaeodora, and A. terminalis were grouped by multivariate statistical analysis. The major compounds were rich in benzenoids and terpenoids such as 1-nitro-2-phenylethane (88.34–70.85%), linalool (15.2–75.3%), α-phellandrene (36.0–51.8%), and  $\beta$ -phellandrene (11.6–25.6%). DNA barcodes were developed using the internal transcribed spacer (ITS) nuclear region, and the matK, psbA-trnH, rbcL, and ycf1 plastid regions. The markers psbA-trnH and ITS showed the best discrimination for the species, and the phylogenic analysis in the three- (rbcL + matK + trnH - psbA and rbcL + matK + ITS) and four-locus (rbcL + matK + trnH - psbA and rbcL + matK + ITS). psbA + ITS) combination formed clades with groups strongly supported by the Bayesian inference (BI) (PP:1.00) and maximum likelihood (ML) (BS  $\geq$  97%). Therefore, based on statistical multivariate and phylogenetic analysis, the results showed a significant correlation between volatile chemical classes and genetic characteristics of Aniba species.

Keywords: Aniba species; terpenoids; benzenoids; DNA barcode; genetic variability

# 1. Introduction

Lauraceae Juss comprises the most diverse family of woody plants (except the herbaceous parasite *Cassytha*), with about 50 genera and approximately 2500 to 3000 species distributed throughout tropical and subtropical latitudes [1–3]. Lauraceae belongs to the Laurales order and systematically forms close relationships with Hernandiaceae and Monimiaceae [1,4,5].



Citation: Xavier, J.K.A.M.; Maia, L.; Figueiredo, P.L.B.; Folador, A.; Ramos, A.R.; Andrade, E.H.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.R. Essential Oil Composition and DNA Barcode and Identification of *Aniba* species (Lauraceae) Growing in the Amazon Region. *Molecules* **2021**, *26*, 1914. https://doi.org/10.3390/ molecules26071914

Academic Editor: Laura De Martino

Received: 21 February 2021 Accepted: 24 March 2021 Published: 29 March 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). The *Aniba* genus is a Lauraceae member that presents an economical and significant ecological value [6]. This genus has 48 accepted species with greater than 50% concentrated in the Brazilian Amazon [7,8]. *Aniba* species are represented by trees with high essential oil production in all tissues, mainly in the wood and bark. *Aniba duckei* Kosterm and *A. rosaeodora* Ducke are known as "rosewood" in the Amazon region, and these species produce an oil rich in linalool (about 85–90%) [9,10]. Brazilian rosewood oil has a characteristic aroma and is a long-established ingredient of fragrances, flavors, and food products [11]. The species *Aniba parviflora* (Meisn.) Mez, called "macacaporanga" or "louro rosa," is confused with the real rosewood plants due to their morphological similarity. However, these species present very distinct aromas in wood and leaf oils because the linalool content in *A. parviflora* is only 40% [9,12,13]. Linalool is also detected in oils from *Aniba terminalis* Ducke, with amounts varying from 22.1 to 36.2% in the aerial parts and inflorescences of a specimen collected in Belém (PA, Brazil) [14].

Aniba canelilla (H.B.K.) Mez is an aromatic plant with a characteristic odor, which is easily confused with cinnamon trees. It is popularly known as "casca-preciosa" and "falsa-canela." Its chemical composition has two main constituents, 1-nitro-2-phenylethane, which is generally found as the major component responsible for the cinnamon-like odor characteristic, and methyleugenol [15–17]. The *A. canelilla* essential oil EO displayed cardiovascular activities in normotensive rats, causing hypotension, bradycardia, and vasorelaxant effects [18–22]. The EO of *A. rosaeodora* and *A. parviflora* species showed antidepressant activity in rats [23], and an anesthetic potential in fish and rat species [24,25]. In folk medicine, the leaves and barks of *A. parviflora* are used to prepare tea and infusions, tinctures, and poultices to treat snakebite envenomation victims [26]. Additionally, the *A. canelilla* bark decoction is commonly used for its antispasmodic, digestive, stimulating, and carminative properties [16].

The recognition of the Lauraceae taxa, and the *Aniba* genus, in particular, is a difficult task due to the lack of morphological characters that can be used objectively and also due to the low level of sampling in the Amazon, which makes most species poorly represented in herbaria [27–30]. Some factors also hamper accurate identification: The use of common names for the species, which sometimes do not correspond to the scientific name; the rare collecting of fertile specimens, either for comparison in herbaria or by experts [31]. The identification methods have recently been gradually expanding to new techniques such as DNA-based identification [2,32].

DNA barcoding is designed to provide a fast, accurate, and automated identification of species using short and standardized genes as internal species markers [33]. Various molecular markers have been analyzed to develop plant DNA barcodes that can be readily sequenced and have a sufficiently high sequence divergence at the species-level [34,35]. These markers include the coding plastid regions, *matK*, *rbcL*, non-coding *trnH-psbA* intergenic spacer, and nuclear ribosomal internal transcribed spacer region (ITS) [36–38]. The DNA barcoding has been an essential tool for species identification and supplements traditional morphology-based taxonomy [33,39,40].

The identification of *Aniba* species by molecular markers is still unresolved. The present study aimed to explore the correlation between the volatile compositions and the genetic markers in *Aniba* species existing in the Amazon.

#### 2. Results and Discussion

#### 2.1. Chemical Composition and Multivariate Analysis

The yields and volatile compositions of the *Aniba* oils are displayed in Table 1. The oil yields of these species were as follows: *Aniba canelilla, A. parviflora, A. rosaeodora,* and *A. terminalis.* GC and GC-MS were used to quantify and identify the volatile constituents of *Aniba* oil samples. One hundred and eighteen components were identified, representing an average of 97.8% of the total percentage identified among the samples (see Table 1). *A. parviflora* oils showed the highest number of compounds identified, fifty-four and fifty-seven in the leaves (AP-L) and twigs (AP-T), respectively. The sample with the lowest number of

compounds was *A. canelilla*, with fifteen compounds in the leaves (AC-L) and twenty-five in the twigs (AC-T). The species *A. terminalis* showed forty-two (AT-L) and forty-four (AT-T), while *A. rosaeodora* presented thirty-seven (AR-L) and thirty-eight (AR-T). The calculated retention index (RI<sub>C</sub>) of components of the oils were compared with the literature retention index (RI<sub>L</sub>) stored in the libraries of Mondello [41] and Adams [42]. Benzenoid compounds (0.1–91.8%), monoterpene hydrocarbons (0.0–88.9%), and oxygenated monoterpenes (1.2–81.7%) predominated in oils, followed by oxygenated sesquiterpenes (0.9–19.2%) and sesquiterpene hydrocarbons (0.6–10.9%), with minor amounts. The main constituents were 1-nitro-2-phenylethane and linalool in *A. canelilla*; β-phellandrene, and α- and βpinene in *A. parviflora*; linalool and *cis*-linalool oxide in *A. rosaeodora*; and α-phellandrene, *p*-cymene, and β-phellandrene in *A. terminalis*.

The leaf and twig oils (AC-L and AC-T, respectively) of Aniba canelilla were dominated by the benzenoid 1-nitro-2-phenylethane (88.3% and 70.90%, respectively), followed by the oxygenated monoterpene linalool, which showed higher amounts in the twigs (16.1%) in comparison to the leaves (3.9%). In the leaf and twig oils (AP-L and AP-T, respectively) of Aniba parviflora, the monoterpene hydrocarbon  $\beta$ -phellandrene (22.6% and 25.4%, respectively) and the oxygenated monoterpene linalool were the primary constituents, followed by  $\alpha$ -pinene (10.6% and 4.7%),  $\beta$ -pinene (6.4% and 3.5%), and myrcene (3.2% and 4.1%), respectively. Significant amounts of linalool were detected in the leaves and twigs (AR-L, 67.9%; AR-T, 75.3%, respectively) of Aniba rosaeodora, followed by its oxygenation products, cis-linalool oxide (leaves, 5.4%; twigs 2.6%) and trans-linalool oxide (leaves, 4.9%; twigs 2.5%). The oils of leaves and twigs (AT-L and AT-T, respectively) of Aniba terminalis showed the monoterpene hydrocarbons  $\alpha$ -phellandrene (51.8% and 36.0%), *p*-cymene (12.0%, 7.5%), and  $\beta$ -phellandrene (11.6%, 11.9%), as the primary components, respectively, followed by  $\alpha$ -pinene (4.3%, 3.8%),  $\beta$ -pinene (1.5%, 3.6%), respectively, and myrcene (3.6%) only in the twigs (AT-T). Furthermore, in the twigs of A. terminalis, linalool (19.0%) was also identified, which was absent in its leaves.

Principal component analysis (PCA) of the Aniba oils showed that PC1 and PC2 components had explained 82.7% of the phytochemical variation among all samples, classified into four groups (Figure 1). The PC1 component explained 51.1% of the variation, displaying a positive correlation with all terpenoid classes and a negative correlation with the benzenoid compounds. The more informative contributions to group separation were observed with the oxygenated sesquiterpenoids (30.4%), benzenoids (29.7%), and sesquiterpenes hydrocarbons (29.6%). Due to the significant content of sesquiterpenoids (11.20–30.10%) in the samples, AP-T (2.43), AP-L (1.28), AR-T (0.38), and AR-L (1.00) were represented by positive scores in the PC1 component. On the other hand, the most negative scores characterized the oil samples of A. canelilla AC-L (-2.68) and AC-T (-2.12) due to the significant content of benzenoid compounds (72.3–91.8%) in oils. The PC2 component explained 31.58% of the chemical variability, and the most informative contributions to sample separation were the contents of monoterpene hydrocarbons (52.1%, negatively) and oxygenated monoterpenoids (44.4%, positively), presenting in these samples in an amount around 80%. These influences can be easily visualized in the PC2 component by the samples of A. terminalis (AT-L, -2.00; AT-T, -1.19) and A. rosaeodora (AR-L, 1.72; AR-T, 1.92), respectively.

| Oil Yield (%)                            |       |               |                    |                    | 1.5  | 1.0  | 1.6  | 0.9  | 1.8  | 1.6  | 1.3  | 0.7  |
|------------------------------------------|-------|---------------|--------------------|--------------------|------|------|------|------|------|------|------|------|
| Constituents (%)                         | Class | CAS<br>Number | RI( <sub>C</sub> ) | RI( <sub>L</sub> ) | AC-L | AC-T | AP-L | AP-T | AR-L | AR-T | AT-L | AT-T |
| (3E)-Hexenol                             | 0     | 928-97-2      | 848                | 844 <sup>1</sup>   | -    | -    | -    | -    | 0.2  | -    | -    | -    |
| (3Z)-Hexenol                             | О     | 928-96-1      | 846                | 850 <sup>1</sup>   | -    | -    | 1.0  | -    | -    | -    | -    | -    |
| 1-Hexanol                                | О     | 111-27-3      | 860                | 863 <sup>1</sup>   | -    | -    | -    | -    | 0.2  | -    | -    | -    |
| α-Thujene                                | MH    | 2867-05-2     | 828                | 924 <sup>1</sup>   | -    | -    | 0.3  | 0.2  | -    | -    | 0.2  | 0.1  |
| α-Pinene                                 | MH    | 80-56-8       | 934                | 932 <sup>1</sup>   | -    | 2.1  | 10.6 | 4.7  | -    | 0.3  | 4.3  | 3.8  |
| Camphene                                 | MH    | 79-92-5       | 945                | 946 <sup>1</sup>   | -    | -    | 2.4  | 1.7  | -    | -    | 0.7  | 2.0  |
| Benzaldehyde                             | BZ    | 100-52-7      | 954                | 952 <sup>1</sup>   | 0.1  | 0.1  | -    | -    | -    | -    | 0.4  | -    |
| Sabinene                                 | MH    | 3387-41-5     | 972                | 969 <sup>1</sup>   | -    | -    | -    | -    | -    | -    | -    | 2.2  |
| β-Pinene                                 | MH    | 18172-67-3    | 973                | 974 <sup>1</sup>   | -    | 1.3  | 6.4  | 3.5  | -    | 0.2  | 1.5  | 3.6  |
| Myrcene                                  | MH    | 123-35-3      | 985                | 988 <sup>1</sup>   | -    | 0.4  | 3.2  | 4.1  | 0.3  | 0.4  | 3.6  | -    |
| α-Phellandrene                           | MH    | 99-83-2       | 1000               | 1002 <sup>1</sup>  | -    | 0.2  | 1.3  | 3.0  | -    | -    | 51.8 | 36.0 |
| α-Terpinene                              | MH    | 99-86-5       | 1012               | $1014 \ ^{1}$      | -    | -    | 0.2  | 0.5  | -    | -    | -    | -    |
| <i>cis-p</i> -menth-2-en-1-ol            | OM    | 53399-74-9    | 1124               | $1118 \ ^{1}$      | -    | -    | 0.1  | 0.1  | -    | -    | -    | -    |
| <i>p</i> -Cymene                         | MH    | 99-87-6       | 1020               | 1020 <sup>1</sup>  | -    | 0.1  | 1.0  | 0.4  | -    | -    | 12.0 | 7.5  |
| Limonene                                 | MH    | 5989-27-5     | 1024               | $1024 \ ^{1}$      | -    | -    | -    | -    | 0.2  | 0.3  | -    | -    |
| β-Phellandrene                           | MH    | 555-10-2      | 1026               | 1025 <sup>1</sup>  | -    | 2.8  | 22.6 | 25.4 | -    | -    | 11.6 | 11.9 |
| (Z)-β-Ocimene                            | MH    | 3338-55-4     | 1032               | 1032 <sup>1</sup>  | -    | -    | -    | 3.3  | -    | 0.1  | 1.4  | 1.8  |
| Benzene acetaldehyde                     | BZ    | 122-78-1      | 1037               | 1036 <sup>1</sup>  | 2.7  | 0.5  | -    | -    | -    | -    | -    | -    |
| (E)-β-Ocimene                            | MH    | 3779-61-1     | 1043               | $1044 \ ^{1}$      | -    | 0.5  | 1.7  | -    | 0.1  | 0.2  | 0.4  | 0.7  |
| γ-Terpinene                              | MH    | 99-85-4       | 1056               | $1054 \ ^{1}$      | -    | -    | 0.6  | 0.7  | -    | -    | 0.2  | 0.1  |
| Acetophenone                             | BZ    | 98-86-2       | 1061               | 1059 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | -    | -    |
| <i>cis</i> -Linalool oxide<br>(furanoid) | ОМ    | 23007-29-6    | 1071               | 1067 <sup>1</sup>  | -    | -    | 0.3  | -    | 5.4  | 2.6  | 0.1  | -    |
| <i>trans</i> -Linalool oxide (furanoid)  | OM    | 41720-60-9    | 1089               | 1084 <sup>1</sup>  | -    | -    | 0.4  | -    | 4.9  | 2.5  | -    | -    |
| Terpinolene                              | MH    | 586-62-9      | 1088               | 1086 <sup>1</sup>  | -    | -    | -    | 0.2  | -    | -    | 1.0  | 0.6  |
| Linalool                                 | OM    | 78-70-6       | 1102               | $1095 \ ^{1}$      | 3.9  | 16.1 | 21.9 | 15.2 | 67.9 | 75.3 | -    | 19.0 |
| trans-Pinene hydrate                     | OM    | 4948-29-2     | 1112               | 1119 <sup>1</sup>  | -    | -    | -    | -    | -    | 0.1  | -    | -    |
| allo-Ocimene                             | MH    | 3016-19-1     | 1131               | 1128 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | 0.1  | 0.1  |
| Benzene acetonitrile                     | BZ    | 140-29-4      | 1138               | 1134 <sup>1</sup>  | 0.4  | 0.4  | -    | -    | -    | -    | -    | -    |
| iso-3-Thujanol                           | OM    | 33766-31-3    | 1141               | 1134 <sup>1</sup>  | -    | -    | -    | 0.1  | -    | -    | -    | -    |
| trans-Pinocarveol                        | OM    | 547-61-5      | 1141               | 1135 <sup>1</sup>  | -    | -    | 0.2  | -    | -    | -    | -    | -    |
|                                          |       |               |                    |                    |      |      |      |      |      |      |      |      |

**Table 1.** Yield and volatile composition of the *Aniba* essential oils.

| Oil Yield (%)                           |       |               |                    |                    | 1.5  | 1.0  | 1.6  | 0.9  | 1.8  | 1.6  | 1.3  | 0.7  |
|-----------------------------------------|-------|---------------|--------------------|--------------------|------|------|------|------|------|------|------|------|
| Constituents (%)                        | Class | CAS<br>Number | RI( <sub>C</sub> ) | RI( <sub>L</sub> ) | AC-L | AC-T | AP-L | AP-T | AR-L | AR-T | AT-L | AT-T |
| cis-Linalool oxide (pyranoid)           | OM    | 22628-11-1    | 1172               | 1170 <sup>1</sup>  | -    | -    | -    | -    | 0.3  | 0.1  | -    | -    |
| <i>trans</i> -Linalool oxide (pyranoid) | OM    | 41720-62-1    | 1176               | $1173 \ ^{1}$      | -    | -    | -    | -    | 0.4  | 0.2  | -    | -    |
| Terpinen-4-ol                           | OM    | 562-74-3      | 1181               | $1174 \ ^{1}$      | -    | -    | 0.7  | 0.7  | -    | -    | 0.1  | 0.1  |
| <i>p</i> -Cymen-8-ol                    | OM    | 1197-01-9     | 1188               | 1179 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | 0.1  | -    |
| Cryptone                                | OM    | 500-02-7      | 1190               | 1183 <sup>1</sup>  | 0.1  | -    | 0.1  | -    | -    | -    |      | -    |
| α-Terpineol                             | OM    | 98-55-5       | 1195               | 1186 <sup>1</sup>  | 0.3  | 0.4  | 3.9  | 3.9  | 0.2  | 0.6  | 0.8  | 0.9  |
| trans-Piperitol                         | OM    | 16721-39-4    | 1206               | 1207 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | -    | -    |
| Nerol                                   | OM    | 106-25-2      | 1231               | 1227 <sup>1</sup>  | -    | -    | -    | -    | -    | 0.1  | -    | -    |
| Geraniol                                | OM    | 106-24-1      | 1256               | 1249 <sup>1</sup>  | -    | -    | -    | -    | 0.1  | 0.2  | -    | -    |
| 2-Phenylethyl acetate                   | BZ    | 103-45-7      | 1258               | $1254^{\ 1}$       | 0.2  | 0.1  | -    | -    | -    | -    | -    | -    |
| Thymol                                  | OM    | 89-83-8       | 1289               | 1289 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | -    | 0.1  |
| 1-Nitro-2-phenylethane                  | BZ    | 6125-24-2     | 1297               | 1294 <sup>1</sup>  | 88.3 | 70.9 | 0.1  | 0.2  | 0.1  | 0.2  | -    | -    |
| δ-Elemene                               | SH    | 20307-84-0    | 1340               | 1335 <sup>1</sup>  | -    | -    | 0.3  | 0.1  | -    | -    | -    | -    |
| α-Cubebene                              | SH    | 17699-14-8    | 1352               | $1345^{1}$         | -    | 0.3  | 0.1  | 1.3  | -    | -    | 0.1  | 0.4  |
| Eugenol                                 | PP    | 97-53-0       | 1358               | 1356 <sup>1</sup>  | 0.1  | 0.3  | -    | -    | -    | -    | -    | -    |
| Methyl <i>p</i> -anisate                | BZ    | 121-98-2      | 1374               | 1375 <sup>2</sup>  | -    | -    | -    | -    | 0.2  | 0.1  | -    | -    |
| α-Copaene                               | SH    | 3856-25-5     | 1379               | $1374^{\ 1}$       | 0.1  | 0.3  | -    | 0.3  | 1.1  | 0.5  | 0.1  | 0.1  |
| β-Elemene                               | SH    | 33880-83-0    | 1395               | 1389 <sup>1</sup>  | -    | -    | 0.2  | 0.4  | 0.2  | 0.2  | 0.4  | 0.6  |
| 7-epi-Sesquithujene                     | SH    | 159407-35-9   | 1392               | 1390 <sup>1</sup>  | -    | -    | -    | 0.3  | -    | -    | -    | 0.1  |
| (Z)-Caryophyllene                       | SH    | 118-65-0      | 1411               | $1408 \ ^{1}$      | 0.5  | -    | -    | -    | -    | -    | -    | -    |
| (E)-Caryophyllene                       | SH    | 87-44-5       | 1424               | $1417 \ ^{1}$      | -    | 0.8  | 2.8  | 1.9  | 0.2  | 0.3  | 1.2  | 0.8  |
| <i>trans</i> -α-Bergamotene             | SH    | 13474-59-4    | 1439               | 1432 <sup>2</sup>  | -    | -    | -    | 0.1  | -    | -    | -    | -    |
| Aromadendrene                           | SH    | 109119-91-7   | 1444               | 1439 <sup>1</sup>  | -    | -    | 0.5  | -    | -    | -    | -    | -    |
| (Z)-β-Farnesene                         | SH    | 28973-97-9    | 1433               | $1440^{\ 1}$       | -    | -    | 0.1  | 1.5  | -    | -    | 0.1  | 0.5  |
| α-Himachalene                           | SH    | 3853-83-6     | 1447               | $1449^{\ 1}$       | -    | -    | 0.2  | -    | -    | -    | -    | -    |
| $(E)$ - $\beta$ -Farnesene              | SH    | 18794-84-8    | 1459               | $1454 \ ^{1}$      | -    | -    | -    | 1.2  | -    | -    |      | 0.4  |
| α-Humulene                              | SH    | 6753-98-6     | 1459               | $1454 \ ^{1}$      | -    | 0.2  | 0.4  | -    | -    | -    | 0.2  | -    |
| α-Acoradiene                            | SH    | 24048-44-0    | 1464               | $1464 \ ^{1}$      | -    | -    | 0.2  | -    | -    | -    | -    | -    |
| γ-Muurolene                             | SH    | 30021-74-0    | 1474               | $1478 \ ^{1}$      | -    | -    | -    | -    | -    | -    | 0.1  | -    |
| γ-Gurjunene                             | SH    | 22567-17-5    | 1480               | $1475^{\ 1}$       | -    | -    | -    | -    | 0.3  | -    | -    | -    |
| γ-Curcumene                             | SH    | 28976-68-3    | 1483               | $1481 \ ^{1}$      | -    | -    | -    | 0.2  | -    | -    | -    | -    |
| Germacrene D                            | SH    | 23986-74-5    | 1484               | $1484 \ ^{1}$      | -    | -    | 0.4  | 0.6  | -    | -    | 0.3  | 0.3  |

Table 1. Cont.

| Oil Yield (%)                      |       |               |                    |                    | 1.5  | 1.0  | 1.6  | 0.9  | 1.8  | 1.6  | 1.3  | 0.7  |
|------------------------------------|-------|---------------|--------------------|--------------------|------|------|------|------|------|------|------|------|
| Constituents (%)                   | Class | CAS<br>Number | RI( <sub>C</sub> ) | RI( <sub>L</sub> ) | AC-L | AC-T | AP-L | AP-T | AR-L | AR-T | AT-L | AT-T |
| β-Selinene                         | SH    | 17066-67-0    | 1492               | 1489 <sup>1</sup>  | -    | 0.3  | 0.1  | 0.6  | 2.9  | 0.5  | 0.2  | 0.1  |
| α-Selinene                         | SH    | 473-13-2      | 1497               | 1498 <sup>2</sup>  | -    | 0.2  | 1.1  | -    | -    | -    | 0.2  |      |
| Valencene                          | SH    | 4630-07-3     | 1501               | 1496 <sup>1</sup>  | -    | -    | -    | -    | 2.4  | 0.4  |      | 0.2  |
| Bicyclogermacrene                  | SH    | 67650-90-2    | 1502               | $1500^{1}$         | -    | -    | 1.9  | 0.9  | -    | -    | -    | -    |
| α-Muurolene                        | SH    | 10208-80-7    | 1505               | $1500^{1}$         | -    | -    | -    | 0.1  | -    | -    | -    | -    |
| $(E,E)$ - $\alpha$ -Farnesene      | SH    | 502-61-4      | 1504               | $1505 \ ^{1}$      | -    | -    | -    | -    | -    | -    | 0.1  | 0.1  |
| γ-Cadinene                         | SH    | 483-74-9      | 1512               | 1513 <sup>2</sup>  | -    | -    | -    | -    | -    | -    | 0.1  | 0.1  |
| β-Curcumene                        | SH    | 28976-67-2    | 1516               | $1514 \ ^{1}$      | -    | -    | -    | 0.3  | -    | -    | -    | -    |
| $7-epi-\alpha$ -Selinene           | SH    | 28290-23-5    | 1524               | 1520 <sup>1</sup>  | -    | -    | 0.1  | 0.1  | -    | -    | -    | -    |
| δ-Cadinene                         | SH    | 483-76-1      | 1521               | 1522 <sup>1</sup>  | -    | 0.1  | 0.2  | 0.9  | -    | 0.1  | 0.2  | 0.2  |
| trans-Cadina-1,4-diene             | SH    | 38758-02-0    | 1537               | 1533 <sup>1</sup>  | -    | -    | -    | 0.1  | -    | -    | -    | -    |
| <i>cis</i> -Sesquisabinene hydrate | OS    | 58319-05-4    | 1548               | 1542 <sup>1</sup>  | -    | -    | -    | 0.2  | -    | -    | -    | 0.1  |
| Elemol                             | OS    | 639-99-6      | 1554               | $1548 \ ^{1}$      | -    | -    | 0.2  | 2.0  | -    | -    | 0.9  | 1.3  |
| Germacrene B                       | SH    | 15423-57-1    | 1559               | 1559 <sup>1</sup>  | -    | -    | -    | -    | 0.1  | -    | -    | -    |
| (E)-Nerolidol                      | OS    | 40716-66-3    | 1567               | 1561 <sup>1</sup>  | -    | -    | 0.2  | 0.6  | 0.1  | 0.2  | 0.1  | 0.3  |
| Palustrol                          | OS    | 5986-49-2     | 1575               | 1567 <sup>1</sup>  | -    | -    | 0.2  | -    | -    | -    | -    | -    |
| Spathulenol                        | OS    | 6750-60-3     | 1584               | 1577 <sup>1</sup>  | -    | 0.1  | 3.4  | 0.9  | 1.0  | 0.6  | 0.1  | 0.2  |
| Caryophyllene oxide                | OS    | 1139-30-6     | 1587               | 1582 <sup>1</sup>  | 2.4  | 0.1  | 1.7  | 0.7  | 1.6  | 1.0  | 0.2  | 0.3  |
| Viridiflorol                       | OS    | 552-02-3      | 1598               | 1592 <sup>1</sup>  | -    | -    | -    | 0.1  | -    | -    | -    | -    |
| Cubeban-11-ol                      | OS    | 864875-70-7   | 1600               | 1595 <sup>1</sup>  | -    | -    | 0.3  | -    | -    | -    | -    | -    |
| Guaiol                             | OS    | 489-86-1      | 1603               | $1600^{1}$         | -    | -    | -    | 1.0  | -    | -    | 0.5  | 0.4  |
| Rosifoliol                         | OS    | 63891-61-2    | 1606               | $1600^{1}$         | -    | -    | 0.4  | 0.4  | -    | -    | -    | 0.1  |
| Khusimone                          | OS    | 30557-76-7    | 1603               | 1604 <sup>1</sup>  | -    | -    | 0.3  | -    | -    | -    | -    | -    |
| β-Atlantol                         | OS    | 38142-56-2    | 1609               | $1608 \ ^{1}$      | -    | -    | 0.2  | -    | -    | -    | -    | -    |
| Humulene epoxide II                | OS    | 19888-34-7    | 1616               | $1608 \ ^{1}$      | -    | -    | -    | -    | 0.4  | 0.1  | 0.1  | -    |
| Junenol                            | OS    | 472-07-1      | 1619               | 1618 <sup>1</sup>  | -    | -    | -    | -    | 0.2  | 0.3  | -    | -    |
| 10- <i>epi</i> -γ-Eudesmol         | OS    | 15051-81-7    | 1626               | 1622 <sup>1</sup>  | -    | -    | -    | 0.2  | -    | -    | -    | -    |
| <i>epi-γ-</i> Eudesmol             | OS    | 117066-77-0   | 1627               | 1624 <sup>2</sup>  | -    | -    | -    | 0.3  | -    | -    | -    | -    |
| Eremoligenol                       | OS    | 10219-71-3    | 1629               | 1629 <sup>1</sup>  | -    | -    | 0.3  | -    | -    | -    | -    | 0.2  |
| γ-Eudesmol                         | OS    | 1209-71-8     | 1638               | 1630 <sup>1</sup>  | -    | -    | 1.6  | 4.5  | -    | -    | -    | -    |
| β-Acorenol                         | OS    | 28400-11-5    | 1644               | 1636 <sup>1</sup>  | -    | -    | 0.6  | -    | -    | -    | -    | -    |
| allo-Aromadendrene epoxide         | OS    | 85760-81-2    | 1644               | 1639 <sup>1</sup>  | 0.3  | -    | -    | 0.3  | -    | -    | -    | -    |

Table 1. Cont.

| Oil Yield (%)                                  |                          |               |                    |                    | 1.5  | 1.0  | 1.6  | 0.9  | 1.8  | 1.6  | 1.3  | 0.7  |
|------------------------------------------------|--------------------------|---------------|--------------------|--------------------|------|------|------|------|------|------|------|------|
| Constituents (%)                               | Class                    | CAS<br>Number | RI( <sub>C</sub> ) | RI( <sub>L</sub> ) | AC-L | AC-T | AP-L | AP-T | AR-L | AR-T | AT-L | AT-T |
| Caryophylla-4 (12),8(13)-dien-5β-ol            | OS                       | 19431-80-2    | 1642               | 1639 <sup>1</sup>  | -    | -    | -    | -    | 0.1  | 0.1  | -    | -    |
| <i>epi-α</i> -Muurolol                         | OS                       | 19912-62-0    | 1646               | 1640 <sup>1</sup>  | -    | -    | -    | 1.0  | -    | -    | -    | -    |
| α-Muurolol                                     | OS                       | 19435-97-3    | 1651               | 1644 <sup>1</sup>  | -    | -    | -    | -    | -    | -    | 0.1  | -    |
| Cubenol                                        | OS                       | 21284-22-0    | 1651               | 1645 <sup>1</sup>  | -    | -    | -    | -    | -    | 0.3  | -    | -    |
| Khusilal                                       | OS                       | 2221-68-3     | 1651               | 1647 <sup>1</sup>  | -    | -    | 0.1  | -    | 0.1  | -    | -    | -    |
| β-Eudesmol                                     | OS                       | 473-15-4      | 1656               | 1649 <sup>1</sup>  | -    | -    | 0.4  | 1.7  | -    | -    | 0.8  | 0.4  |
| α-Eudesmol                                     | OS                       | 473-16-5      | 1659               | 1652 <sup>1</sup>  | -    | -    | 0.6  | 2.3  | -    | -    | 1.0  | -    |
| Pogostol                                       | OS                       | 21698-41-9    | 1661               | 1651 <sup>1</sup>  |      | 0.7  | -    | -    | -    | -    | -    | -    |
| neo-Intermedeol                                | OS                       | 5945-72-2     | 1660               | 1658 <sup>1</sup>  | 0.1  | -    | -    | -    | -    | 0.6  | -    | -    |
| Selin-11-en-4α-ol                              | OS                       | 16641-47-7    | 1660               | 1658 <sup>1</sup>  | -    | -    | -    | -    | 0.9  | -    | -    | -    |
| 14-Hydroxy-(Z)-caryophyllene                   | OS                       | 78683-81-5    | 1663               | 1666 <sup>1</sup>  | -    | -    | -    | -    | -    | 0.2  | -    | -    |
| 14-Hydroxy-9 <i>-epi-</i><br>(E)-carvophyllene | OS                       | 79768-25-5    | 1667               | 1668 <sup>1</sup>  | 0.2  | -    | 0.3  |      | 0.2  | 0.9  | -    | -    |
| Bulnesol                                       | OS                       | 22451-73-6    | 1672               | $1670^{1}$         | -    | -    | 0.2  | 1.3  | -    | -    | 0.4  | 0.4  |
| <i>epi</i> -β-Bisabolol                        | OS                       | 235421-59-7   | 1675               | 1670 <sup>1</sup>  | -    | -    | -    | 0.8  | -    | -    | -    | 0.1  |
| $(Z)$ - $\alpha$ -Santalol                     | OS                       | 115-71-9      | 1677               | $1674 \ ^{1}$      | -    | -    | -    | -    | 0.4  | 1.4  | -    | -    |
| Khusinol                                       | OS                       | 24268-34-6    | 1672               | 1679 <sup>1</sup>  | -    | -    | -    | 0.1  | 0.2  | -    | -    | -    |
| α-Bisabolol                                    | OS                       | 515-69-5      | 1687               | $1685 \ ^{1}$      | -    | -    | -    | 0.8  | -    | -    | -    | 0.1  |
| 14-Hydroxy-α-humulene                          | OS                       | 75678-90-9    | 1713               | 1713 <sup>1</sup>  | -    | -    | -    | -    | 1.2  | 0.1  | -    | -    |
| iso-Longifolol                                 | OS                       | 1139-17-9     | 1728               | 1728 <sup>1</sup>  | -    | -    | -    | -    | 2.6  | 3.1  | -    | -    |
| (Z)-Lanceol                                    | OS                       | 10067-28-4    | 1752               | $1760^{1}$         | -    | -    | -    | -    | 0.2  | -    | -    | -    |
| β-Acoradienol                                  | OS                       | 149496-35-5   | 1762               | 1762 <sup>1</sup>  | -    | -    | -    | -    | 0.1  | 0.3  | -    | -    |
| Benzyl benzoate                                | BZ                       | 120-51-4      | 1769               | 1772 <sup>2</sup>  | -    | -    | -    | 0.1  | 0.3  | 0.9  | -    | 0.1  |
| Mono                                           | Monoterpene Hydrocarbons |               |                    |                    |      | 7.4  | 50.3 | 47.7 | 0.6  | 1.5  | 88.8 | 70.4 |
| Oxygenated monoterpenoids                      |                          |               |                    |                    | 4.3  | 16.5 | 28.1 | 20.4 | 79.2 | 81.7 | 1.2  | 20.6 |
| Sesquiterpene Hydrocarbons                     |                          |               |                    |                    | 0.6  | 2.2  | 8.6  | 10.9 | 7.2  | 2.0  | 3.3  | 3.9  |
| Oxyge                                          | enated sesqui            | terpenoids    |                    |                    | 3.0  | 0.9  | 11.0 | 19.2 | 9.3  | 9.2  | 4.2  | 3.9  |
| Ber                                            | nzenoid com              | pounds        |                    |                    | 91.8 | 72.3 | 0.1  | 0.3  | 0.4  | 1.2  | 0.4  | 0.1  |
| Others                                         |                          |               |                    |                    | -    | -    | 1.0  | -    | 0.4  | -    | -    | -    |
|                                                | Total                    |               |                    |                    | 99.7 | 99.3 | 99.1 | 98.5 | 97.3 | 95.6 | 97.9 | 98.9 |

Table 1. Cont.

RI<sub>(C)</sub> = calculated retention index; RI<sub>(L)</sub> = literature retention index; <sup>1</sup> [41]; <sup>2</sup> [42]; AC: *A. canelilla*; AP: *A. parviflora*, AR: *A. rosaeodora*, AT: *A. terminalis*, L: Leaves, T: Twigs, MH: Monoterpene hydrocarbons, OM: Oxygenated monoterpene, SH: Sesquiterpene hydrocarbons, OS: Oxygenated sesquiterpenoids, BZ: Benzenoids. Bold = main constituents above 5%.



**Figure 1.** The bidimensional plot of the first two components from principal component analysis (PCA) of *Aniba* species, based on the classes of compounds present in their essential oils: **AC** (*A. canelilla*), **AP** (*A. parviflora*), **AR** (*A. rosaeodora*), **AT** (*A. terminalis*), **L** (leaves), **T** (twigs), **PC1** (first principal component), **PC2** (second principal component).

Based on the dendrogram (Figure 2) resulting from the hierarchical cluster analysis (HCA), using the classes of compounds as variables, the *Aniba* species' oils were arranged into two main groups, presenting a dissimilarity of 16.8%. Cluster I comprised the leaves (AC-L) and twigs (AC-T) of *A. canelilla* and comprised samples rich in benzenoid compounds (72.28–91.78%), especially 1-nitro-2-phenylethane, showing a dissimilarity of 99.5%. Cluster II grouped all oil samples of *A. parviflora*, *A. terminalis*, and *A. rosaeodora*. The oils of *A. parviflora* (AP-L and AP-T) showed a dissimilarity of 8.3% with the oils of *A. terminalis* (AT-L and AT-T), forming a subgroup that displayed a dissimilarity of only 11.39% with the oils of *A. rosaeodora* (AR-L and AR-T). This second group was characterized by the high content of monoterpene hydrocarbons (47.54–88.91%) as  $\alpha$ -phellandrene (36.0–51.83%), which is present in the oils of AT-L and AT-T; as  $\beta$ -phellandrene (11.58–25.58%) in the oils of AP-L, AP-T, AT-L, and AT-T; and as linalool (15.23–75.30%), the primary constituent in the oil samples of AR-L, AP-T, AP-L, and AP-T.

Due to the morphological similarity, the species A. parviflora and A. rosaeodora have been confused concerning their true botanical identification. On the other hand, these species presented distinct scents, despite the significant linalool content in their oils. An olfactory analysis of EOs from A. rosaeodora and A. parviflora, performed by enantioselective gas chromatography coupled to olfactometry, showed a significant difference between these oils [12,43]. In addition, the aromas extracted from the leaves of A. parviflora and A. rosaeodora by solid-phase microextraction (SPME), monitored by electrospray ionization mass spectrometry, and followed by PCA multivariate statistical analysis, showed a high efficiency at distinguishing the samples, as well as at separating them by collecting data, indicating the influence of the maturation stage on their chemical composition [44]. Leaf oils from thirty-five trees of A. rosaeodora growing in the Pará state, Brazil, were extracted and analyzed by GC and GC-MS. Significant variations in the oil yield (1.2 to 4.2%) and linalool content (38.5–71.0%) were observed in these tree samples. On the other hand, the oil yield (0.9 to 1.3%) and linalool content (12.6 to 21.3%) determined for two trees of A. parviflora were much smaller, probably due to different botanical species, but with very similar morphology. Moreover, the hierarchical cluster analysis (HCA) showed differences



in *A. rosaedora* and *A. parviflora* oil compositions. The oil of *A. parviflora* also showed a high content of  $\beta$ -phellandrene (21.1–23.6%), which is absent in the oil of *A. rosaeodora* [45].

**Figure 2.** Hierarchical clusters analysis (HCA) obtained by Ward linkage method to *Aniba* species based on compound class present in their essential oil: **AC** (*A. canelilla*), **AP** (*A. parviflora*), **AR** (*A. rosaeodora*), **AT** (*A. terminalis*), **L** (leaves), **T** (twigs).

#### 2.2. DNA Barcode Analysis

According to the CBOL (Consortium for the Barcode of Life) (www.ibol.org/phase1 / cbol accessed on 7 February 2021) plant working group, an ideal DNA barcode should associate conserved regions with a universal primer design, present elevated rates of PCR amplification and sequencing, and have genetic variability. This is sufficient to distinguish sequences at the species level still sufficiently conserved among individuals of the same species [36,46,47].

In the present study, the *rbcL* plastid DNA region exhibited a high performance, with 100% of successful reactions and specific amplifications, resulting in high-quality and straightforward sequencing for the *Aniba* species. The success of *rbcL* should be expected as it is a stable, easily amplified, and phylogenetically conserved locus [47–49]. Similar patterns have been reported for 133 species of Lauraceae collected in China, represented by 12 genera, including *Alseodaphne, Cinnamomum, Cryptocarya, Lindera, Litsea, Machilus,* and *Neolitsea*. The samples showed a *rbcL* PCR amplification and elevated sequencing rates, which were considered as barcode loci [37].

Primer universality is a critical factor unquestionably determining the reliability of barcode-based species identification [50]. The intergenic spacer *psbA-trnH* was highly successful in amplification and the intermediate reactions in sequencing. It is considered a robust marker that allows PCR amplification from diverse plant taxa [49] and special phylogenetic studies in Lauraceae [51–54].

The *matK* marker showed easy amplification of the samples, but the sequencing was not satisfactory. Many studies questioned its utility as a barcode due to low amplification, sequencing performance, and problems related to the primers universality [55]. Consequently, the literature has recommended a more significant number of primers from the *matK* region [49,56]. This DNA region was tested in Amazonian tree species, including Lauraceae, and the results showed a low rate of sequencing success, even after using two different pairs of primers [57].

Primers of two ITS regions were tested, but only the ITS-2 region demonstrated success in amplification and sequencing. Amplification difficulties of the ITS region were also found in the *Sassafras* species collected in Taiwan and 42 species from diverse genera of Lauraceae, such as *Aniba*, *Cinnamomum*, *Endlicheria*, *Laurus*, *Lindera*, *Litsea*, and *Machilus*, collected from the Chinese provinces of Hubei, Jiangxi, Guangdong, and Guangxi [58,59]. Despite multiple amplification attempts with varying DNA concentrations and annealing temperatures, the *ycf*1 marker did not amplify the tested species. The results suggested that re-development of the *ycf*1 barcode specific for *Aniba* species may be necessary.

Based on the markers used in this study, it was not possible to obtain the identification level for the species of *Aniba*. However, we must consider that only a few sequences of the *Aniba* genus are available from Genbank and BOLD, which served as a central reference for comparisons [60]. The best-match molecular identification was at the family level for *psbA-trnH*, *matK*, and ITS markers, and the genus level for *rbcL*.

Multiple alignments of all sequences for each region presented the most extensive length (833 bp) to *rbcL* and the shortest length (249 bp) to ITS (Table 2). In terms of molecular variation, *matK* and *rbcL* demonstrated more conserved sequences with the number of polymorphic sites (0 and 5, respectively) and nucleotide diversity showing low values ( $\geq 0.0034$ ). The *rbcL* region is considered a benchmark locus in phylogenetic investigations by providing a taxon's reliable placement into a plant family and genus. Therefore, it showed insufficient sequence variation to distinguish between closely related species [61].

Table 2. Molecular characteristics of the four markers evaluated for Aniba species.

| DNA Markers                     | Alignment<br>Length (bp) | Number of<br>Polymorphic Sites | Total Number<br>of Sites * |
|---------------------------------|--------------------------|--------------------------------|----------------------------|
| matK                            | 286                      | -                              | 300                        |
| rbcL                            | 833                      | 5                              | 829                        |
| psbA-trnH                       | 471                      | 27                             | 401                        |
| ITS                             | 249                      | 26                             | 239                        |
| matK + rbcL + psbA - trnH       | 1590                     | 32                             | 1508                       |
| matK + rbcL + ITS               | 1368                     | 31                             | 1346                       |
| matK + rbcL + psbA - trnH + ITS | 1839                     | 58                             | 1747                       |

\* Excluding sites with gaps/missing data.

The *matK* region also showed surprisingly low genetic diversity when analyzing 48 species belonging to different genera of the Lauraceae family, such as *Actinodaphne*, *Aniba*, *Laurus*, *Lindera*, *Litsea*, *Neolitsea*, and *Nectandra* [62]. However, in a multilocus approach, *rbcL* and *matK* discriminated a total of 49% of the 100 taxa belonging to flowering plants, including species from the Asteraceae, Caryophillaceae, Fabaceae, Euphorbiaceae, Brassicaceae, and Ericaceae [63].

The barcodes ITS and *psbA-trnH* showed the highest number of polymorphic sites and nucleotide diversity with values of 27/0.0543 and 26/0.0336, respectively (Table 2). Studies conducted with ITS and *psbA-trnH* show that both loci are powerful for differentiating Apocynaceae species [64]. The *psbA-trnH* region has been used as a DNA barcode to authenticate several plants with similar morphological characteristics [58,65]. This region in the chloroplast genome is described as a barcode rich in simple sequence repetitions (mainly stretches of mononucleotides) and small insertions and deletions (INDELs) [47,66] that lead to species-level identification of plant taxa [67,68]. The *psbA-trnH* INDEL polymorphisms served as markers to identify different species of the genus *Citrus* and *Sonneratia*, belonging to the families Rutaceae and Lythraceae, respectively [67,68].

The genetic variabilities of two populations of *Aniba rosaeodora* in the Reserva Extrativista Tapajós-Arapiuns (RESEX) and Floresta Nacional do Tapajós (FLONA), Brazilian Government conservation units in Western Pará State, were evaluated. The results showed that the *psbA-trnH* region had the highest number of polymorphism sites (25 variables) in comparison to the regions *psbD-trnT*, *trnC-rpoB*, and *trnS-trnG*, which presented values from zero to four sites [69].

The aligned and concatenated matrices rbcL + matK + psbA - trnH, rbcL + matK + ITS, and rbcL + matK + psbA - trnH + ITS presented a total of 1590, 1368, and 1839 bp,

respectively. Among the three concatenated matrices, rbcL + matK + psbA - trnH + ITS reached a greater number of polymorphic sites (58) and nucleotide diversity (0.0167). The best-fit substitution model for each gene was: HKY + F for ITS, F81 + F + I for *matK* and rbcL, and GTR + F for psbA - trnH. The phylogenetic relationships in *Aniba* species were established by the combination of rbcL + matK + ITS, rbcL + matK + psbA - trnH, and rbcL + matK + trnH - psbA + ITS. The consensus trees obtained from the Bayesian inference (BI) and maximum likelihood (ML) analyses were identical in their topologies, and the PP (posterior probabilities) and BS (bootstrap support) values (Figures 3–5). The trees constructed by the ML and BI method for each individual region and their support values can be visualized in the Supplementary Material (Figures S1–S8).



**Figure 3.** Bayesian consensus tree based on rbcL + matK + trnH - psbA + internal transcribed spacer (ITS) sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq$ 70%)/Bayesian posterior probabilities (>0.9) are shown above the branches.



**Figure 4.** Bayesian consensus tree based on *rbcL* + *matK* + ITS sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq$ 74%)/Bayesian posterior probabilities (>0.9) are shown above the branches.



**Figure 5.** Bayesian consensus tree based on rbcL + matK + trnH - psbA sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq$ 70%)/Bayesian posterior probabilities (>0.9) are shown above the branches.

Aniba species formed clades with groups strongly supported by Bayesian inference (BI) (PP:1.00) and maximum likelihood (ML) (BS  $\geq$  97%). Aniba parviflora and A. rosaeodora are botanically very similar species and, together with A. terminalis, exhibit chemical alliances due to linalool's presence in their essential oils [11,14]. Phytochemically analyzing other secondary compounds, the presence of pseudoalkaloid anibine firmly links the species A. rosaeodora and A. parviflora, forming a complex [28,70].

In this study, *A. rosaeodora* is a sister to a clade composed of *A. terminalis* and *A. parviflora*. In addition, genetically and chemically, *A. parviflora* and *A. terminalis* have showed close relationships. The content of linalool detected in these species ranged from 15.23 to 21.93%, while that of *A. rosaeodora* was above 67%. *Aniba canelilla* presented a distinct clade as this species exhibits a high morphological similarity with *Aniba ferrea* Kubitzki. This pair of species is closely related to the exclusive presence of pyrones versus neolignans. Moreover, there are substantial quantities of eugenol-derived allylphenols [70].

The genetic and essential oil diversity was investigated with specimens of *A. rosaeodora* from Reserva Extrativista Tapajós-Arapiuns (RESEX), Floresta Nacional do Tapajós (FLONA), and the Municipality of Presidente Figueiredo, in the Amazonas State, Brazil. The analysis was performed with the concatenated matrix of the regions *psbA-trnH*, *psbD-trnT*, *trnC-rpoB*, and *trnS-trnG* forming two clades: (1) including collections from FLONA and the Municipality of Presidente Figueiredo, and (2) including collections from RESEX. Clade 1 showed moderate support (PP: 0.87), coinciding with the low diversity of volatile components from FLONA samples, where linalool predominated with 83.7%. By contrast, clade (2) was strongly supported by samples of RESEX (PP: 1.0), presenting monoterpene hydrocarbons (40.0%) and oxygenated monoterpenoids as most abundant (41.3%), with only 39.6% of linalool, followed by 22.8% of  $\alpha$ -phellandrene, compound that was absent in the FLONA samples [69].

By contrast, this correlation was not observed in essential oil compositions and matK sequences of *Ocotea caudata* (Nees) Mez., *O. cujumary* Mart., and *O. canaliculata* (Rich.) Mez. from Caxiuanã National Forest (Amazon, Brazil). *Ocotea caudata* was characterized by the presence of germacrene D (19.9%) and monoterpene hydrocarbons  $\alpha$ -pinene (9.8%) and  $\beta$ -pinene (9.7%). Simultaneously, *O. cujumary* and *O. canaliculata* showed a high similarity due to the amounts of  $\beta$ -caryophyllene (22.2% and 18.9%, respectively). However, genetically, *O. cujumary* was shown to be the clade's sister (BS:70%) formed by *O. caudata* and *O. canaliculata* [71].

#### 3. Materials and Methods

# 3.1. Plant Material

The specimens of *Aniba parviflora* (Nees) Mez, *A. rosaeodora* Ducke, and *A. canelilla* (Kunth) Mez were collected in the Campus of Universidade Federal Rural da Amazônia (UFRA), and the *Aniba terminalis* Ducke was sampled in the Zoobotanical Park of Museu Paraense Emilio Goeldi (MPEG), both Federal Institutions located in Belém city, Pará state, Brazil. The plant vouchers were identified and cataloged in the Herbarium João Murça Pires of Emilio Goeldi Museum, as listed in Table 3.

Table 3. Data from Aniba species.

| Species                         | Vouchers  | Plant Material  | Sample Codes |
|---------------------------------|-----------|-----------------|--------------|
| Aniba canelilla (Kunth) Mez.    | MG135105  | Leaves          | AC-L         |
| Aniha narziflora (Moien ) Moz   | MC007000  | Leaves          | AC-1<br>AP-L |
| Antou pur oljioru (Meish.) Mez. | WIG227333 | Twigs           | AP-T         |
| Aniba rosaeodora Ducke          | MG229347  | Twigs           | AR-L<br>AR-T |
| Aniba terminalis Ducke          | MG172694  | Leaves<br>Twigs | AT-L<br>AT-T |

#### 3.2. Essential Oil Extraction

The leaves and twigs were dried for two days at room temperature and then subjected to essential oil distillation. The samples were ground and submitted to hydrodistillation using a Clevenger-type apparatus (3 h). The oils were dried over anhydrous sodium sulfate, and the yields were calculated based on the dry weight of the plant material. The moisture content of each sample was measured using an infrared moisture balance for water loss measurement.

## 3.3. GC-MS Analysis

The oil samples were analyzed on a GCMS-QP2010 Ultra system (Shimadzu Corporation, Tokyo, Japan), equipped with an auto-injector (AOC-20i). The parameters of analysis were: A silica capillary column Rxi-5ms (30 m × 0.25 mm; 0.25 µm film thickness) (Restek Corporation, Bellefonte, PA, USA); injector temperature: 250 °C; oven temperature programming: 60-240 °C (3 °C/min); helium as carrier gas, adjusted to a linear velocity of 36.5 cm/s (1.0 mL/min); splitless mode injection of 1 µL of sample (oil 5 µL:hexane 500 µL); ionization by electronic impact at 70 eV; ionization source and transfer line temperatures at 200 and 250 °C, respectively. The mass spectra were obtained by automatically scanning every 0.3 s, with mass fragments in the range of 35–400 *m/z*. The quantitative data regarding the volatile constituents were obtained by peak-area normalization using a GC 6890 Plus Series (Agilent, Wilmington, DE, USA), coupled to a flame ionization detector (FID), operated under similar GC-MS system conditions.

The retention index was calculated for all volatile components using a homologous series of  $C_8$ – $C_{20}$  *n*-alkanes (Sigma-Aldrich, St. Louis, MI, USA), according to the linear equation of Van den Dool and Kratz [72]. The components of oils were identified by comparing their retention indices and mass spectra (molecular mass and fragmentation pattern) with data stored in the NIST [73], Mondello [41], and Adams [42] libraries.

#### 3.4. Statistical Analysis

Each class of compound content in the leaf samples was used as a variable in multivariate analysis. First, the matrix's data standardization was performed by subtracting the mean and dividing it by the standard deviation. For hierarchical cluster analysis (HCA) and principal component analysis (PCA), the Ward distance and a correlation matrix were applied, respectively. These analyses were performed using XLSTAT software (free trial version version 2021.1, Addinsoft, Paris, France).

#### 3.5. Oligonucleotides Design

The primers *rbcL* and ITS were designed using the software Primer Blast (https: //www.ncbi.nlm.nih.gov/tools/primer-blast/ accessed on 20 December 2020) based on the *Aniba* sequences previously deposited on GenBank (https://www.ncbi.nlm.nih.gov/ accessed on 5 December 2020). The primers of *psbA-trnH*, *matK*, and *ycf*1 regions were based on studies described in the literature [48,72,74,75]. The primers were synthesized by the companies Síntese Biotecnologia (ITS, *psbA-trnH* and *rbcL*; Belo Horizonte, Brazil) and Gbtoligos (*ycf*1 and *matK*, Alvorada, Brazil).

# 3.6. DNA Extraction, Amplification, and Sequencing

Genomic DNA was extracted from 100 mg of fresh leaves using a plant DNA isolation Kit (PureLink<sup>TM</sup> Genomic DNA, Invitrogen, Carlsbad, CA, USA), according to its specifications, and stored at -20 °C. Polymerase chain reactions (PCR) of the regions ITS, *matK*, *psbA-trnH* e *rbcL*, and *ycf*1 were performed at a volume of 50 µL containing 4.4 µL of DNA template, 0.2 pmoles of each primer, and 43.6 µL of PCR SuperMix (22 nM Tris-HCl at pH 8.4, 55 mM KCl, 1.65 mM MgCl<sub>2</sub>, 220 µM dGTP, 220 µM dATP, 220 µM dTTP, 220 µM dCTP, and 22 U/mL Taq DNA polymerase, Invitrogen, Carlsbad, CA, USA). To regions ITS, *psbA-trnH*, and *ycf*1, 0.4 µL of MgCl<sub>2</sub> (Invitrogen, Carlsbad, CA, USA) was added in the PCR reaction, resulting in a final concentration of MgCl<sub>2</sub> of 1.84 mM. DNA amplifications were conducted in a thermocycler (GeneAmp PCR System 9700, Foster, CA, USA), and a negative control was carried out for all PCR reactions in the absence of DNA. Amplification products were visualized in agarose gel 1.5% and purified following the GeneJET PCR Purification Kit (Life Technologies, Massachusetts, CA, USA), and then sent to the ACTgene company (Alvorada, Brazil) for DNA sequencing. Table 4 presents the sequences of the primers of each fragment and its PCR amplification conditions.

Table 4. Primer sequences applied in DNA amplification of Aniba species and its experimental conditions.

| Region            | Primers                              | Sequence(5'-3')                                                                             | Amplification Protocol                                                           |
|-------------------|--------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| ITS               | ITS 1F<br>ITS 1R<br>ITS 2F<br>ITS 2R | GAGCTCCGAACAAACCCTCT<br>AAGACTCGATGGTTCACGGG<br>CCCGTGAACCATCGAGTCTTT<br>GACGGCTCGCCTCTCAAC | 95 °C 7 min; 95 °C 1 min,<br>52 °C 1 min, 72 °C 1 min,<br>35 cycles; 72 °C 7 min |
| matK <sup>a</sup> | matK-Lau001                          | TCCTTTCTTGAGCGAACACA                                                                        | 5 °C 7 min; 95 °C 1 min, 56 °C 1 min, 72 °C                                      |
|                   | matK-Lau002                          | CTGACAAATCGGACCGAAAC                                                                        | 1 min, 35 cycles; 72 °C 7 min                                                    |
| psbA <sup>b</sup> | <i>psbA3_</i> f F                    | GTTATGCATGAACGTAATGCT                                                                       | 5 °C 7 min; 95 °C 1 min, 56 °C 1 min, 72 °C                                      |
| trnH <sup>c</sup> | <i>trnHf_</i> 05 R                   | CGCGCATGGTGGATTCACAATCC                                                                     | 1 min, 35 cycles; 72 °C 7 min                                                    |
| rbcL              | rbcL 1F                              | GGACAACTGTGTGGACCGAT                                                                        | 95 °C 7 min; 95 °C 1 min,61 °C 1 min, 72 °C                                      |
|                   | rbcL 1R                              | AAACGGTCTCTCCAACGCAT                                                                        | 1 min, 35 cycles; 72 °C 7 min                                                    |
| rbcL              | rbcL 2F                              | ATGCGTTGGAGAGACCGTTT                                                                        | 95 °C 5 min; 95 °C 1 min, 53 °C 1 min,                                           |
|                   | rbcL 2R                              | AAAGTGATGTCCCGTTCCCC                                                                        | 72 °C 1 min, 30 cycles; 72 °C 7 min                                              |
| ycf1 d            | <i>ycf</i> 1bF                       | TCTCGACGAAAATCAGATTGTTGTGAAT                                                                | 95 °C 5 min; 95 °C 1 min, [50–57 °C] 1 min,                                      |
|                   | <i>ycf</i> 1bR                       | ATACATGTCAAAGTGATGGAAAA                                                                     | 72 °C 1 min, 30 cycles; 72 °C 7 min                                              |

<sup>a</sup> [71]; <sup>b</sup> [76], <sup>c</sup> [75], <sup>d</sup> [48].

## 3.7. Sequence Identity and Phylogenetic Analysis

The forward and reverse sequences of each amplified region (ITS, *matK*, *psbA-trnH*, and *rbcL*) were edited and aligned using the software MUSCLE algorithm [76] implemented within MEGA 7 software [77]. Sequences were compared with available sequences in the National Center for Biotechnology Information (NCBI) GenBank database (http://www.ncbi.nlm.nih.gov/ accessed on 7 December 2020), using the tool Blast N. DNA sequences generated in this study were deposited in the NCBI GenBank, and accession numbers are listed in the Supporting Information (Table 5).

| Species                        | ITS      | psbA-trnH | rbcL     | matK     |
|--------------------------------|----------|-----------|----------|----------|
| Aniba canelilla (Kunth) Mez.   | MW489499 | MW512551  | MW512547 | MW512555 |
| Aniba parviflora (Meisn.) Mez. | MW489500 | MW512552  | MW512548 | MW512556 |
| Aniba rosaeodora Ducke         | MW489501 | MW512553  | MW512549 | MW512557 |
| Aniba terminalis Ducke         | MW489502 | MW512554  | MW512550 | MW512558 |

Table 5. GenBank accession numbers of Aniba species collected in the Amazon.

DNA sequences were aligned using the software MAFFT Ver 7.122 (Osaka University, Osaka, Japan) [78] and manually adjusted, when necessary, with the MEGA7 software [77]. The phylogenetic analyses were inferred from sequence variation in the three-locus (*rbcL* + *matK* + *trnH*-*psbA* and *rbcL* + *matK* + ITS) and four-locus combination (*rbcL* + *matK* + *trnH*-*psbA* + ITS). The analyses were performed in the software PhyloSuite (Github, Free Software Foundation, Inc., San Francisco, CA, USA) [79] using two different approaches: Maximum likelihood (ML) and Bayesian inference (BI) analyses using the programs IQ-Tree v.6.1 (Github, Free Software Foundation, Inc.) [80] and MrBayes v.3.2.6 (Github, Free Software Foundation, Inc.) [81], respectively. Evolutionary models were tested using the ModelFinder program implemented in IQ-TREE version 1.5.4 (Github, Free Software Foundation, Inc.) [82], based on the Akaike information criterion (AIC). For the ML and BI analyses, the dataset was partitioned by markers. For maximum likelihood analyses, the branch supports for the tree were estimated with 5000 bootstrap replicates using UFBoot (Ultrafast Boostrap Approximation) [80].

For Bayesian Inference, analyses were performed using two parallel runs and a sampling frequency set to every 10,000,000 generations. The trees were sampled every 100 generations, and the first 25% of the samples were discarded as burn-in trees. The remaining trees were used to construct a 50% majority-rule consensus tree. *Laurus nobilis* L. was defined as an outgroup (KM360844.1, MH552343.1, AY265392.1, and EU153959.1). The resulting trees from both analyses were output into FigTree v.1.4.4 [83], and their topologies were compared.

The median length described the genetic variability of each marker (bp) and total alignment length (bp), both discounting gaps, the number of sites with gaps, and nucleotide diversity ( $\pi$ ), using the DnaSP v6 [84].

## 4. Conclusions

In this study, it was proven that the essential oils of *Aniba canelilla* are rich in benzenoid compounds, while *A. rosaeodora*, *A. parviflora*, and *A. terminalis* are rich in monoterpene hydrocarbons and oxygenated monoterpenes, with important variations in the relative quantity of major constituents. The primary classes of compounds showed a significant correlation with phylogenetic analysis. The *psbA-trnH* and ITS regions allowed the estimation of relatively high polymorphic sites and nucleotide diversity. The regions *rbcL* and *matK*, although very conserved, provided important information on the taxonomic levels to ordering genus and family. In general, the *psbA-trnH* and ITS genes were significant in terms of nucleotide differentiation, while the *matK* and *rcbL* genes indicated genetic similarity between the species studied. Based on the results, it was possible to verify that the genetic and chemical data are closely related in the studied *Aniba* species.

**Supplementary Materials:** The following are available online, Figure S1. Maximum likelihood tree based on *rbcL* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values (67%) are shown above the branches. Figure S2. Bayesian inference tree based on *rbcL* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq 0.7$ ) are shown above the branches. Figure S3. Maximum likelihood tree based on *matK* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq 0.7$ ) are shown above the branches. Figure S3. Maximum likelihood tree based on *matK* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values (34%) are shown above the branches. Figure S4. Bayesian inference tree based on *matK* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Figure S5. Maximum likelihood tree based on ITS sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq 33\%$ ) are shown above the branches. Figure S6. Bayesian

inference tree based on ITS sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bayesian posterior probabilities (1) are shown above the branches. Figure S7. Maximum likelihood tree based on *psbA-trnH* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq$ 33%) are shown above the branches. Figure S8. Bayesian inference tree based on *psbA-trnH* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bootstrap support values ( $\geq$ 33%) are shown above the branches. Figure S8. Bayesian inference tree based on *psbA-trnH* sequences of species of *Aniba* and *Laurus nobilis* (outgroup). Bayesian posterior probabilities (1) are shown above the branches.

**Author Contributions:** J.K.A.M.X. and L.M. conducted the experiments; J.K.A.M.X., P.L.B.F. and J.K.R.d.S. performed the statistical analysis; J.G.S.M., P.L.B.F. and E.H.A. contributed to the GC-MS analyses; A.R.R., A.F., J.K.R.d.S. and J.K.A.M.X. contributed to the phylogenetic analyses; W.N.S., J.G.S.M. and J.K.R.d.S. edited and approved the final version manuscript. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was supported by the Aromatic Plant Research Center (APRC, https://aromaticplant.org/, accessed on 20 December 2020).

**Data Availability Statement:** Publicly available gene sequence datasets were analyzed in this study. These data can be found here: https://www.ncbi.nlm.nih.gov/genbank/, accessed on 20 December 2020; accession numbers: *Aniba canelilla* (MW489499, MW512551, MW512547, and MW512555), *A. parviflora* (MW489500, MW512552, MW512548, and MW512556), *A. rosaeodora* (MW489501, MW512553, MW512549, and MW512557), and *A. terminalis* (MW489502, MW512554, MW512550, and MW512558).

Acknowledgments: The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Niível Superior (CAPES—Coordination for the Improvement of Higher Education Personnel) for providing a scholarship to J.K.A.M.X. and L.M.

Conflicts of Interest: The authors declare that they have no competing interests.

Sample Availability: Samples of this work are available from the authors.

## References

- 1. Angiosperm Phylogeny Group (APG) IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.* **2016**, *181*, 1–20. [CrossRef]
- 2. Chanderbali, A.S.; Van der Werff, H.; Renner, S.S. Phylogeny and historical biogeography of *Lauraceae*: Evidence from the chloroplast and nuclear genomes. *Ann. Mo. Bot. Gard.* **2001**, *88*, 104. [CrossRef]
- 3. Rohwer, J.G. Lauraceae. In *The Families and Genera of Vascular Plants: Magnoliid, Hamameliid and Caryophyliid Families;* Kubitzki, K., Rohwer, J., Bittrich, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 2, pp. 336–391. [CrossRef]
- 4. Renner, S.S. Circumscription and phylogeny of the *Laurales*: Evidence from molecular and morphological data. *Am. J. Bot.* **1999**, *86*, 1301–1315. [CrossRef]
- 5. Renner, S.S.; Chanderbali, A.S. What is the relationship among *Hernandiaceae*, *Lauraceae*, and *Monimiaceae*, and why is this question so difficult to answer? *Int. J. Plant Sci.* 2000, *161*, S109–S119. [CrossRef]
- 6. Contim, L.A.S.; Carvalho, C.R.; Martins, F.A.; Freitas, D.V. Nuclear DNA content and karyotype of rosewood (*Aniba rosaeodora*). *Genet. Mol. Biol.* **2005**, *28*, 754–757. [CrossRef]
- 7. Sobral, M.; Proença, C.; Souza, M.; Mazine, F.; Lucas, E. Lista de Espécies da Flora do Brasil. 2020. Available online: http: //floradobrasil.jbrj.gov.br (accessed on 2 September 2020).
- 8. Tropicos. Lauraceae Juss. Missouri Botanical Garden. Available online: http://www.tropicos.org (accessed on 3 February 2021).
- 9. Maia, J.G.S.; Andrade, E.H.A.; Couto, H.A.R.; Silva, A.C.M.; Marx, F.; Henke, C. Plant sources of amazon rosewood oil. *Quim. Nova* 2007, *30*, 1906–1910. [CrossRef]
- 10. Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. *Quim. Nova* **2009**, *32*, 595–622. [CrossRef]
- 11. Maia, J.G.S.; Mourão, R.H.V. Amazon rosewood (*Aniba rosaeodora* Ducke and *A. parviflora*) oils. In *Essential Oils in Food Preservation*, *Flavor and Safety*; Elsevier: Amsterdam, The Netherlands, 2016; pp. 193–201. [CrossRef]
- 12. D'Acampora, Z.B.; Lo Presti, M.; Barata, L.E.S.; Dugo, P.; Dugo, G.; Mondello, L. Evaluation of leaf-derived extracts as an environmentally sustainable source of essential oils by using gas chromatography-mass spectrometry and enantioselective gas chromatography-olfactometry. *Anal. Chem* **2006**, *78*, 883–890. [CrossRef]
- 13. Tranchida, P.; Souza, R.; Barata, L.; Mondello, M.; Dugo, P.; Dugo, G.; Mondello, L. Analysis of macacaporanga (*Aniba parviflora*) leaf essential oil by using comprehensive two-dimensional gas chromatography combined with rapid-scanning quadrupole mass spectrometry. *Chromatogr. Today* **2008**, *1*, 5–9.
- 14. Andrade, E.H.A.; Zoghbi, M.G.B.; Maia, J.G.S. Volatiles from Aniba terminalis Ducke. J. Essent. Oil Res. 2003, 15, 81–82. [CrossRef]

- 15. Da Silva, J.K.R.; Sousa, P.J.C.; Andrade, E.H.A.; Maia, J.G.S. Antioxidant capacity and cytotoxicity of essential oil and methanol extract of *Aniba canelilla* (H.B.K.) Mez. J. Agric. Food Chem. 2007, 55, 9422–9426. [CrossRef]
- 16. Maia, J.G.S.; Zoghbi, M.G.B.; Andrade, E.H.A. *Plantas Aromáticas na Amazônia e Seus Óleos Essenciais*; Museu Paraense Emilio Goeldi: Belém, Brazil, 2001.
- 17. Souza, F.J.C., Jr.; Luz-Moraes, D.; Pereira, F.S.; Barros, M.A.; Fernandes, L.M.P.; Queiroz, L.Y.; Maia, C.F.; Maia, J.G.S.; Fontes-Junior, E.A. *Aniba canelilla* (Kunth) Mez (Lauraceae): A review of ethnobotany, phytochemical, antioxidant, antiinflammatory, cardiovascular, and neurological properties. *Front. Pharmacol.* **2020**, *11*, 699. [CrossRef]
- Brito, T.S.; Lima, F.J.B.; Aragão, K.S.; De Siqueira, R.J.B.; Sousa, P.J.C.; Maia, J.G.S.; Filho, J.D.; Lahlou, S.; Magalhães, P.J.C. The vasorelaxant effects of 1-nitro-2-phenylethane involve stimulation of the soluble guanylate cyclase-cGMP pathway. *Biochem. Pharmacol.* 2013, *85*, 780–788. [CrossRef] [PubMed]
- 19. De Siqueira, R.J.B.; Macedo, F.I.B.; Interaminense, L.F.L.; Duarte, G.P.; Magalhães, P.J.C.; Brito, T.S.; Da Silva, J.K.R.; Maia, J.G.S.; Sousa, P.J.C.; Leal-Cardoso, J.H.; et al. 1-Nitro-2-phenylethane, the main constituent of the essential oil of *Aniba canelilla*, elicits a vago-vagal bradycardiac and depressor reflex in normotensive rats. *Eur. J. Pharmacol.* **2010**, *638*, 90–98. [CrossRef]
- Interaminense, L.F.L.; De Siqueira, R.J.B.; Xavier, F.E.; Duarte, G.P.; Magalhães, P.J.C.; Da Silva, J.K.; Maia, J.G.S.; Sousa, P.J.C.; Leal-Cardoso, J.H.; Lahlou, S. Cardiovascular effects of 1-nitro-2-phenylethane, the main constituent of the essential oil of *Aniba canelilla*, in spontaneously hypertensive rats. *Fundam. Clin. Pharmacol.* 2011, 25, 661–669. [CrossRef] [PubMed]
- Interaminense, L.F.L.; Ramos-Alves, F.E.; De Siqueira, R.J.B.; Xavier, F.E.; Duarte, G.P.; Magalhães, P.J.C.; Maia, J.G.S.; Sousa, P.J.C.; Lahlou, S. Vasorelaxant effects of 1-nitro-2-phenylethane, the main constituent of the essential oil of *Aniba canelilla*, in superior mesenteric arteries from spontaneously hypertensive rats. *Eur. J. Pharm. Sci.* 2013, *48*, 709–716. [CrossRef] [PubMed]
- Lahlou, S.; Magalhães, P.J.C.; de Siqueira, R.J.B.; Figueiredo, A.F.; Interaminense, L.F.L.; Maia, J.G.S.; Sousa, P.J.C. Cardiovascular effects of the essential oil of *Aniba canelilla* bark in normotensive rats. *J. Cardiovasc. Pharmacol.* 2005, 46, 412–421. [CrossRef] [PubMed]
- Dos Santos, É.R.Q.; Maia, C.S.F.; Fontes, E.A., Jr.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. J. Ethnopharmacol. 2018, 212, 43–49. [CrossRef]
- 24. Baldisserotto, B.; Barata, L.E.S.; Silva, A.S.; Lobato, W.F.F.; Silva, L.L.; Toni, C.; Silva, L.V.F. Anesthesia of tambaqui *Colossoma macropomum* (Characiformes: Serrasalmidae) with the essential oils of *Aniba rosaeodora* and *Aniba parviflora* and their major compound, linalool. *Neotrop. Ichthyol.* **2018**, *1*, 16. [CrossRef]
- De Almeida, R.N.; Araújo, D.A.M.; Gonçalves, J.C.R.; Montenegro, F.C.; De Sousa, D.P.; Leite, J.R.; Mattei, R.; Benedito, M.A.C.; De Carvalho, J.G.B.; Cruz, J.S.; et al. Rosewood oil induces sedation and inhibits compound action potential in rodents. J. Ethnopharmacol. 2009, 124, 440–443. [CrossRef]
- 26. De Moura, V.M.; Da Costa Guimarães, N.; Batista, L.T.; Freitas-de-Sousa, L.A.; De Sousa Martins, J.; De Souza, M.C.S.; de Almeida, O.P.D.; Monteiro, W.M.; De Oliveira, R.B.; Dos-Santos, M.C.; et al. Assessment of the anti-snakebite properties of extracts of *Aniba fragrans* Ducke (Lauraceae) used in folk medicine as complementary treatment in cases of envenomation by Bothrops atrox. *J. Ethnopharmacol.* 2018, 213, 350–358. [CrossRef] [PubMed]
- 27. Hopkins, M.J.G. Modelling the known and unknown plant biodiversity of the Amazon Basin. J. Biogeogr. 2007, 34, 1400–1411. [CrossRef]
- 28. Kubitzki, K.; Renner, S. Lauraceae I (Aniba and Aiouea). Flora Neotrop. 1982, 31, 1–124.
- 29. Matta, A.; Carvalho, R.B.; Vicentini, A. Aniba inaequabilis (Lauraceae), a new species from Peru. Phytotaxa 2016, 282, 139. [CrossRef]
- 30. Van der Werff, H. A key to the genera of Lauraceae in the new world. Ann. Mo. Bot. Gard. 1991, 78, 377. [CrossRef]
- Franciscon, C.H.; Miranda, I.S. Distribution and conservation of *Aniba* Aubl. (Lauraceae Jussieu) species in Brazil. *Biota Neotrop.* 2018, 18, 362. [CrossRef]
- 32. Hwang, S.W.; Kobayashi, K.; Zhai, S.; Sugiyama, J. Automated identification of Lauraceae by scale-invariant feature transform. *J. Wood Sci.* **2018**, *64*, 69–77. [CrossRef]
- 33. Hebert, P.D.N.; Gregory, T.R. The promise of DNA barcoding for taxonomy. Syst. Biol. 2005, 54, 852–859. [CrossRef]
- 34. Kress, W.J.; Erickson, D.L. A two-locus global DNA barcode for land plants: The coding RBCL gene complements the non-coding trnH-psbA spacer region. *PLoS ONE* **2007**, *2*, e508. [CrossRef] [PubMed]
- 35. Shneyer, V.S.; Rodionov, A.V. Plant DNA barcodes. Biol. Bull. Rev. 2019, 9, 295–300. [CrossRef]
- 36. Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L.; Fazekas, A.J.; et al. A DNA barcode for land plants. *Proc. Natl. Acad. Sci. USA* **2009**, *106*, 12794–12797. [CrossRef]
- 37. Liu, Z.F.; Ci, X.Q.; Li, L.; Li, H.W.; Conran, J.G.; Li, J. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. *PLoS ONE* **2017**, *12*, e0175788. [CrossRef]
- Zhang, M.; Yahara, T.; Tagane, S.; Rueangruea, S.; Suddee, S.; Moritsuka, E.; Suyama, Y. Cryptocarya kaengkrachanensis, a new species of Lauraceae from Kaeng Krachan National Park, southwest Thailand. PhytoKeys 2020, 140, 139–157. [CrossRef]
- Packer, L.; Gibbs, J.; Sheffield, C.; Hanner, R. DNA barcoding and the mediocrity of morphology. *Mol. Ecol. Resour.* 2009, *9*, 42–50. [CrossRef]
- 40. Wang, F.H.; Lu, J.M.; Wen, J.; Ebihara, A.; Li, D.Z. Applying DNA Barcodes to Identify Closely Related Species of Ferns: A Case Study of the Chinese Adiantum (Pteridaceae). *PLoS ONE* **2016**, *11*, e0160611. [CrossRef]
- 41. Mondello, L. FFNSC 2: Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011.

- 42. Adams, R.P. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry;* Allured Publishing Corporation: Carol Stream, IL, USA, 2007.
- 43. Sarrazin, S.; Oliveira, R.; Maia, J.; Mourão, R. Antibacterial activity of the rosewood (*Aniba rosaeodora* and *A. parviflora*) linalool-rich oils from the Amazon. *Eur. J. Med. Plants* **2016**, *12*, 1–9. [CrossRef]
- 44. Souza, R.C.Z.; Eiras, M.M.; Cabral, E.C.; Barata, L.E.S.; Eberlin, M.N.; Catharino, R.R. The famous amazonian rosewood essential oil: Characterization and adulteration monitoring by electrospray ionization mass spectrometry fingerprinting. *Anal. Lett.* **2011**, 44, 2417–2422. [CrossRef]
- 45. Zoghbi, M.G.B.; Ohashi, S.T.; Salomão, R.P.; Guilhon, G.M.S.P. Chemical variability of *Aniba rosaeodora* oils. *Glob. J. Sci. Front. Res. B Chem.* **2015**, *15*, 780.
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. *Proc. R. Soc. Lond. Ser. B Biol. Sci.* 2003, 270, 313–321. [CrossRef] [PubMed]
- Kress, W.J.; Erickson, D.L.; Jones, F.A.; Swenson, N.G.; Perez, R.; Sanjur, O.; Bermingham, E. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proc. Natl. Acad. Sci. USA* 2009, *106*, 18621–18626. [CrossRef] [PubMed]
- 48. Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. Ycf1, the most promising plastid DNA barcode of land plants. *Sci. Rep.* **2015**, *5*, 8348. [CrossRef]
- 49. Kang, Y.; Deng, Z.; Zang, R.; Long, W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. *Sci. Rep.* **2017**, *7*, 12564. [CrossRef] [PubMed]
- 50. Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA barcodes to identify flowering plants. *Proc. Natl. Acad. Sci. USA* **2005**, *102*, 8369–8374. [CrossRef] [PubMed]
- 51. Cruz-Maya, M.E.; Barrientos-Priego, A.F.; Zelaya-Molina, L.X.; Rodríguez-de la O, J.L.; Reyes-Alemán, J.C. Phylogenetic analysis of some members of the subgenus *Persea* (*Persea*, Lauraceae). *Rev. Chapingo Ser. Hortic.* **2018**, 24, 133–150. [CrossRef]
- 52. Trofimov, D.; De Moraes, P.L.R.; Rohwer, J.G. Towards a phylogenetic classification of the *Ocotea* complex (Lauraceae): Classification principles and reinstatement of Mespilodaphne. *Bot. J. Linn. Soc.* **2019**, *190*, 25–50. [CrossRef]
- 53. Zhao, M.-L.; Song, Y.; Ni, J.; Yao, X.; Tan, Y.-H.; Xu, Z.-F. Comparative chloroplast genomics and phylogenetics of nine *Lindera* species (Lauraceae). *Sci. Rep.* **2018**, *8*, 8844. [CrossRef]
- 54. Roy, S.; Tyagi, A.; Shukla, V.; Kumar, A.; Singh, U.M.; Chaudhary, L.B.; Datt, B.; Bag, S.K.; Singh, P.K.; Nair, N.K.; et al. Universal plant DNA barcode loci may not work in complex groups: A case study with Indian *Berberis* species. *PLoS ONE* **2010**, *5*, e13674. [CrossRef]
- 55. Yan, H.F.; Hao, G.; Hu, C.M.; Ge, X.J. DNA barcoding in closely related species: A case study of *Primula*, L. sect. *Proliferae Pax* (Primulaceae) in China. *J. Syst. Evol.* **2011**, *49*, 225–236. [CrossRef]
- Hollingsworth, P.M.; Graham, S.W.; Little, D.P. Choosing and using a plant DNA barcode. *PLoS ONE* 2011, 6, e19254. [CrossRef]
   [PubMed]
- 57. Gonzalez, M.A.; Baraloto, C.; Engel, J.; Mori, S.A.; Pétronelli, P.; Riéra, B.; Roger, A.; Thébaud, C.; Chave, J. Identification of Amazonian trees with DNA barcodes. *PLoS ONE* **2009**, *4*, e7483. [CrossRef] [PubMed]
- Liu, Z.; Chen, S.L.; Song, J.Y.; Zang, S.I.; Chen, K.L. Application of deoxyribonucleic acid barcoding in *Lauraceae* plants. *Pharmacogn. Mag.* 2012, *8*, 4. [CrossRef]
- 59. Nie, Z.L.; Wen, J.; Sun, H. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. *Plant. Syst. Evol.* **2007**, *267*, 191–203. [CrossRef]
- 60. Tautz, D.; Arctander, P.; Minelli, A.; Thomas, R.H.; Vogler, A.P. A plea for DNA taxonomy. *Trends Ecol. Evol.* **2003**, *18*, 70–74. [CrossRef]
- 61. Newmaster, S.G.; Fazekas, A.J.; Ragupathy, S. DNA barcoding in land plants: Evaluation of *rbcL* in a multigene tiered approach. *Can. J. Bot.* **2006**, *84*, 335–341. [CrossRef]
- 62. Rohwer, J.G. Toward a phylogenetic classification of the *Lauraceae*: Evidence from matK sequences. *Syst. Bot.* **2000**, 25, 60. [CrossRef]
- 63. Giovino, A.; Martinelli, F.; Perrone, A. The technique of plant DNA barcoding: Potential application in floriculture. *Caryologia*. *Int. J. Cytol. Cytosyst. Cytogenet.* **2020**, *73*, 27–38. [CrossRef]
- 64. Lv, Y.N.; Yang, C.Y.; Shi, L.C.; Zhang, Z.L.; Xu, A.S.; Zhang, L.X.; Li, X.L.; Li, H.T. Identification of medicinal plants within the *Apocynaceae* family using ITS2 and psbA-trnH barcodes. *Chin. J. Nat. Med.* **2020**, *18*, 594–605. [CrossRef]
- 65. Feng, S.; Jiao, K.; Zhu, Y.; Wang, H.; Jiang, M.; Wang, H. Molecular identification of species of *Physalis* (*Solanaceae*) using a candidate DNA barcode: The chloroplast *psbA-trnH* intergenic region. *Genome* **2018**, *61*, 15–20. [CrossRef] [PubMed]
- 66. Dong, W.; Liu, J.; Yu, J.; Wang, L.; Zhou, S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. *PLoS ONE* **2012**, *7*, e35071. [CrossRef]
- 67. Mahadani, P.; Ghosh, S.K. Utility of indels for species-level identification of a biologically complex plant group: A study with intergenic spacer in Citrus. *Mol. Biol. Rep.* **2014**, *41*, 7217–7222. [CrossRef]
- 68. Wu, F.; Li, M.; Liao, B.; Shi, X.; Xu, Y. DNA barcoding analysis and phylogenetic relation of mangroves in Guangdong Province, China. *Forests* **2019**, *10*, 56. [CrossRef]
- 69. Amazonas, D.R.; Oliveira, C.; Barata, L.E.S.; Tepe, E.J.; Kato, M.J.; Mourão, R.H.V.; Yamaguchi, L.F. Chemical and genotypic variations in *Aniba rosiodora* from the Brazilian Amazon Forest. *Molecules* **2020**, *26*, 69. [CrossRef] [PubMed]

- 70. Gottlieb, O.R.; Kubitzki, K. Chemosystematics of Aniba. Biochem. Syst. Ecol. 1981, 9, 5–12. [CrossRef]
- 71. Da Silva, J.; da Trindade, R.; Moreira, E.; Maia, J.; Dosoky, N.; Miller, R.; Cseke, L.; Setzer, W. Chemical diversity, biological activity, and genetic aspects of three *Ocotea* species from the Amazon. *Int. J. Mol. Sci.* **2017**, *18*, 1081. [CrossRef]
- 72. Van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *J. Chromatogr.* **1963**, *A11*, 463–471. [CrossRef]
- 73. Lias, S.G.; Mikaia, A.I.; Sparkman, O.D.; Stein, S.E.; Zaikin, G. The NIST/EPA/NIH Mass Spectral Database: Simultaneous Control of Quality and Quantity. 1997. Available online: https://www.nist.gov/publications/nistepanih-mass-spectral-database-simultaneous-control-quality-and-quantity (accessed on 26 February 2021).
- 74. Tate, J.A.; Simpson, B.B. Paraphyly of *Tarasa* (Malvaceae) and diverse origins of the polyploid species. *Syst. Bot.* **2003**, *28*, 723–737. [CrossRef]
- 75. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004, 32, 1792–1797. [CrossRef]
- 76. Sang, T.; Crawford, D.J.; Stuessy, T.F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of *Paeonia (Paeoniaceae)*. *Am. J. Bot.* **1997**, *84*, 1120–1136. [CrossRef]
- 77. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **2016**, *33*, 1870–1874. [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772–780. [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 2015, *32*, 268–274. [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, *61*, 539–542. [CrossRef] [PubMed]
- 82. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* **2017**, *14*, 587–589. [CrossRef] [PubMed]
- 83. Rambaut, A. FigTree. Version 1.4.4. 2018. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 20 December 2020).
- 84. Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. *Mol. Biol. Evol.* **2017**, *34*, 3299–3302. [CrossRef]