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Abstract

Background: Efficient venom delivery systems are known to occur only in varanoid lizards and advanced
colubroidean snakes among squamate reptiles. Although components of these venomous systems might
have been present in a common ancestor, the two lineages independently evolved strikingly different venom gland
systems. In snakes, venom is produced exclusively by serous glands in the upper jaw. Within the colubroidean radiation,
lower jaw seromucous infralabial glands are known only in two distinct lineages—the basal pareatids and the more
advanced Neotropical dipsadines known as “goo-eating snakes”. Goo-eaters are a highly diversified, ecologically specialized
clade that feeds exclusively on invertebrates (e.g., gastropod molluscs and annelids). Their evolutionary success has
been attributed to their peculiar feeding strategies, which remain surprisingly poorly understood. More specifically, it has
long been thought that the more derived Dipsadini genera Dipsas and Sibynomorphus use glandular toxins secreted by
their infralabial glands to extract snails from their shells.

Results: Here, we report the presence in the tribe Dipsadini of a novel lower jaw protein-secreting delivery system
effected by a gland that is not functionally related to adjacent teeth, but rather opens loosely on the oral epithelium
near the tip of the mandible, suggesting that its secretion is not injected into the prey as a form of envenomation but
rather helps control the mucus and assists in the ingestion of their highly viscous preys. A similar protein-secreting
system is also present in the goo-eating genus Geophis and may share the same adaptive purpose as that
hypothesized for Dipsadini. Our phylogenetic hypothesis suggests that the acquisition of a seromucous infralabial
gland represents a uniquely derived trait of the goo-eating clade that evolved independently twice within the group
as a functionally complex protein-secreting delivery system.

Conclusions: The acquisition by snail-eating snakes of such a complex protein-secreting system suggests that
the secretion from the hypertrophied infralabial glands of goo-eating snakes may have a fundamental role in
mucus control and prey transport rather than envenomation of prey. Evolution of a functional secretory system
that combines a solution for mucus control and transport of viscous preys is here thought to underlie the successful
radiation of goo-eating snakes.
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Background

The origin and evolution of the venom-delivery system
in snakes has been a subject of considerable debate
[1-7]. Recent contributions were successful in providing
new, stimulating insights on the long-standing problem
of the origin of the ophidian upper jaw venom system
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[6,7]. However, much remains to be elucidated regarding
the function and morphological diversification of ven-
omous systems in snakes [8-11]. Among advanced colu-
broids [12] the dipsadine “goo-eating” snakes are known
to possess a peculiar lower jaw seromucous secreting
system [10,13-17] that may be paralleled only in parea-
tids, a basal lineage of snail-eating colubroideans that
also seems to possess a similar (but not homologous)
lower jaw seromucous system [8,15,16].

“Goo-eaters” were originally defined as a clade of eight
Neotropical genera belonging to the Subfamily Dipsadinae
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[18]. Among these, Adelphicos, Atractus, and Geophis are
known to feed mainly on earthworms, whereas Ninia,
Dipsas, Sibynomorphus, Sibon, and Tropidodipsas are mol-
luscivorous specialists that feed mainly on slugs and snails
(see Additional file 1). The latter four genera are often
called “snail-eating” snakes [19]. Chersodromus and three
recently described genera—Chapinophis, Omoadiphas, and
Plesiodipsas—also seem to belong to the goo-eating dip-
sadine snake assemblage [20-27]. However, virtually
nothing is known about their relationships and feeding
strategies due to their cryptic habits and scarcity in
collections.

Our investigation of the cephalic glandular and muscu-
lar systems of snail-eating snakes revealed a novel lower
jaw protein-secretion delivery system that we describe and
compare with other goo-eater genera. The new system
reported here represents the first protein-secreting appar-
atus in snakes that is not functionally related to a special-
ized tooth or tooth row, but rather opens loosely on the
epithelium of the mouth floor. The acquisition by the
derived snail-eating snakes of such a complex protein-
secreting system suggests that the secretion from the
hypertrophied infralabial glands of goo-eating snakes may
have a fundamental role in mucus control and prey trans-
port rather than envenomation of prey [17]. Evolution of a
functional secretory system that combines a solution for
mucus control and transport of viscous prey is here
thought to underlie the successful radiation of goo-eating
snakes, a group that includes three of the most speciose
genera of advanced snakes known so far.

Results

The infralabial glands and the epithelium of the floor of
the mouth of Dipsadini

In order to investigate the anatomical specializations of
the protein-secretion delivery system associated to the
lower jaw of snail-eating snakes, we analyzed representa-
tives of four of the five known genera of Dipsadini. We
also dissected representatives of five other goo-eating gen-
era and 29 additional genera of Dipsadinae (see Additional
file 2 and Methods).

All four available genera of Dipsadini present hyper-
trophied infralabial glands, a salient characteristic that
distinguishes them from the remaining Dipsadinae. Be-
sides being hypertrophied, the infralabial gland shows
two distinct patterns within Dipsadini, as follows: in
Sibon and Tropidodipsas (and in the goo-eaters Atractus,
Adelphicos, and Ninia) the infralabial gland is single and
located in the ventrolateral surface of the head, below
the infralabial scales, whereas in Dipsas and Sibynomor-
phus it is divided in two distinct parts (Figures 1A,B,
2A,B; Table 1). The divided infralabial gland in these
two genera is composed of a thin stripe of gland that
runs along the lip and below the infralabial scales,
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from the anterior tip of the dentary to the corner of
the mouth (Figure 1A,B), and a much larger gland that
runs along the ventrolateral surface of the mandible
(Figures 1A,B, 2A,B).

We distinguish in the text below the more dorsolateral
part of the infralabial gland from the more hypertro-
phied ventrolateral part, as the “mucous infralabial
gland” (il1) and the “seromucous infralabial gland” (il2),
respectively (Figure 3). In Dipsas and Sibynomorphus,
the two portions of the infralabial gland are anteriorly
connected through the glandular body and through a
series of small ducts (Figure 3).

The epithelium of the floor of the mouth in Dipsadini
is modified into a loose and extensively folded epithelial
tissue that covers the whole oral cavity, being more ac-
centuated in Dipsas and Sibynomorphus where a heavily
folded epithelium accommodates the large muscle /e-
vator anguli oris laterally to the dentary (Figure 4). The
floor of the mouth in most species of Dipsas and Sibyno-
morphus examined is also apparently unique in having a
pair of openings at the level of the intermandibular
raphe for the release of secretion coming from il2
through a single large duct (Figure 5; Table 1), also re-
vealed by histological sections in D. albifrons and D.
indica (Figures 6 and 7). We failed to confirm the pres-
ence of “mandibular ducts” in six species of Dipsas (D.
brevifascies, D. pakaraima, D. temporalis, D. tenuissima)
and one Sibynomorphus (S. vagus), although their pres-
ence could not be completely ruled out (Table 1).

The il1 of Dipsas and Sibynomorphus and the single
infralabial gland of Sibon and Tropidodipsas are similarly
connected with the mouth by short ducts along the mar-
gin of the lower lip, as in all other Dipsadinae. The short
openings of the ducts of the ill are similar in size and
proportion in all Dipsadinae, except in Sibynomorphus
and Crisantophis where they are significantly larger in
diameter. The ducts of the ill in Dipsadinae open inside
a shallow gutter, or fold, that runs along the lower lip
and sets the boundary between the soft epithelium of
the mouth and the cornified infralabial scales (Figure 3).
This fold is much more pronounced in all four genera of
Dipsadini, and forms a deep gutter that tends to close
dorsally by the contact of both margins. In Sibon and
Sibynomorphus, a second deep fold with no ducts runs
parallel to the latter, forming a double infolding along
the margin of the lip (Figure 3) that was not observed in
Dipsas and Tropidodipsas.

In all four genera of Dipsadini, the median tubercle is
reduced in size, forming only a small, anteriorly tapering
protuberance. The sublingual plicae are also poorly de-
veloped on the floor of the mouth and closely approach
each other anteriorly due to the reduction of the median
tubercle. The outer tongue sheath is reduced, and delin-
eates a narrow opening for the tongue in Dipsas, while it
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Figure 1 Head muscles and glands of Dipsadini. Lateral view of the head of Dipsas neivai (IBSP 54935) (A), Sibynomorphus ventrimaculatus
(IBSP 17228) (B), Sibon nebulatus (KU 112474) (C), and Tropidodipsas sartorii (KU 157636) (D), showing the location of the infralabial gland (il) with
respect to head muscles and mandible. Abbreviations: aem2, muscle adductor mandibulae externus medialis pars posterior; aep, muscle adductor
mandibulae externus profundus; aes, muscle adductor mandibulae externus superficialis; ap.aes, aponeurose of muscle adductor mandibulae externus
superficialis; du, ducts; Hg, harderian gland; il1, lateral, mucous infralabial gland; il2, ventrolateral, seromucous infralabial gland; ipp, muscle
intermandibularis posterior pars posterior; lao, muscle levator anguli oris; sl, supralabial gland; sr, superior rictal gland. Scale bar in all pictures = 2.5 mm.

forms a larger opening for the tongue in Sibon, Sibyno-
morphus, and Tropidodipsas (Figure 4). Sibon nebulatus
differs from the other species analyzed in respect to the
position of the larynx that is located more posteriorly on
the floor of the mouth, being separated from the outer
sheathing tongue by at least twice the distance than in
other dipsadines (Figure 4C).

Histology and histochemistry of the infralabial glands

of Dipsadini

Histological procedures were performed in adult in-
dividuals representing four genera of snail-eating
snakes (Dipsas, Sibon, Sibynomorphus, Tropidodipsas) (see
Additional file 2).

Infralabial glands are basically composed by the secretory
portion forming the glandular body and by ducts in its in-
terior. They are enveloped by a thin layer of connective tis-
sue that penetrates the glandular body, dividing the gland
in lobuli and involving all acini and ducts (Figures 8C and
9C). Due to the spatial arrangement of the two portions of
the infralabial gland (il1 and il2) in the mandible, they are
rarely seen simultaneously in a single histological section,
justifying the need for serial sections in sagittal and hori-
zontal planes that allow a three-dimensional interpretation
of the structures.

In Dipsas albifrons, the posterior region of the il2 is
composed only by seromucous cells, while the rest of the
gland is composed of mucous cells (Figure 6A,B). The
limit between these two regions is clearly visible through
the contrasting stain of seromucous and mucous cells
(Figure 6D). While seromucous cells react weakly positive
to PAS and highly positive to bromophenol blue (Figure 6F
and G, respectively), mucous cells show an intense positive
reaction to alcian blue pH 2.5 and PAS (Figure 6E,F). The
same pattern of cellular distribution is observed in D.
indica [10] (Figure 7A,C). Sections of the heads of both D.
albifrons and D. indica reveal the presence of the man-
dibular duct that runs along the longitudinal middle of the
il2, extending posteroanteriorly to open in the floor of the
mouth at the level of the intermandibular raphe (Figures
6B,C and 7B,C and E). The duct is lined with a simple epi-
thelium constituted by columnar mucous cells.

In Sibynomorphus mikanii, the il2 shows a simple epi-
thelium with polygonal cells forming acini (Figure 8C).
The lumen of these acini is very narrow and difficult to

observe, being filled with secretion in the few histo-
logical sections where the structure is visible. The man-
dibular duct is clearly visible in a sagittal section of the
lower jaw of S. mikanii (Figure 8C). The il2 of S. mikanii
reacts positively to bromophenol blue. In S. mikanii and
S. neuwiedi, the ill1 shows a simple epithelium, with acini
constituted mainly by mucous cells (Figure 8B,D,E). As
shown in transversal sections of the head of S. neuwiedi,
the ill presents a series of short ducts that open just
under the infralabial scales (Figure 8E,F).

Dipsas neivai also presents a large mandibular duct
that runs along the longitudinal middle of the il2
(Figure 9A). However, none of the available sections pro-
vided a clear view of the opening of the duct at the level
of the mouth floor. The il2 is composed by prismatic
secretory cells arranged in acini, and its mandibular duct
is lined by a simple columnar epithelium (Figure 9C).
Cells lining both ill and il2 ducts are always of mucous
nature, reacting positively to PAS and alcian blue pH 2.5
(Figure 9E,F), while part of the cells forming acini react
positively to bromophenol blue (Figure 9D), revealing
their seromucous nature and another part is mucous,
reacting positively to alcian blue pH 2.5 (Figure 9E).

In Sibon nebulatus, the infralabial gland is constituted
by mucous and seromucous cells organized in tubules and
acini (Figure 10A,B). The acini are observed in the posterior
most portion of the gland and are mainly constituted by
seromucous cells, being more intensively stained by
hematoxylin-eosin and bromofenol blue. On the other
hand, the tubules are mainly constituted by mucous cells
that stain only with hematoxylin-eosin (Figure 10B,D,E). In
the central region of the gland, a series of ducts extend
along the glandular body, opening in the anterior region of
the mouth (Figure 10C,G). In addition to these large ducts,
a series of shorter ducts are arranged perpendicularly to the
gland, opening more posteriorly, between the infralabial
scales and the oral epithelium. Posteriorly, at the level of
the insertion of the LAO into the gland, the ducts surround
the muscle to reach the oral epithelium (Figure 10F).

In Tropidodipsas sartorii, the infralabial gland is
mainly constituted by mucous cells that are arranged in
acini and distributed along the whole body of the gland
(Figure 11A). These mucous cells stain with hematoxylin-
eosin and react positively to alcian blue pH 2.5
(Figure 11A,C). Only the posteriormost region of the
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Figure 2 Head muscles and glands of Dipsadini. \Ventral view of the head of Dipsas neivai (IBSP 54935) (A), Sibynomorphus ventrimaculatus
(IBSP 17228) (B), Sibon nebulatus (AMNH 97068) (C), and Tropidodipsas sartorii (KU 157636) (D), showing the location of the infralabial gland (i)
with respect to head muscles and mandible. Abbreviations: aes, muscle adductor mandibulae externus superficialis; ap.aes, aponeurose of muscle
adductor mandibulae externus superficialis; 11, lateral, mucous infralabial gland; il2, ventrolateral, seromucous infralabial gland; ipp, muscle intermandibularis
posterior pars posterior; lao, muscle levator anguli oris; sl, supralabial gland. Scale bar in all pictures = 2.5 mm.

gland presents a series of small acini that are composed by
seromucous cells that stain only with hematoxylin-eosin
(Figure 11D). The infralabial gland of T. sartorii has a
large duct that extends along its medial surface, reaching
its anterior portion (Figure 11A). This duct is formed by

the confluence of a series of shorter and smaller conver-
ging ducts and does not correspond to the mandibular
duct of il2 (Figure 11A,B). Both larger and smaller ducts
are constituted by cells with low cytoplasm and several
nuclei, resembling a stratified epithelium (Figure 11B).

Table 1 Presence of the mandibular duct and type of insertion of both levator anguli oris (LAO) and intermandibularis
posterior pars posterior (IPP) muscles in dissected species of the snail-eating dipsadine clade

LAO insertion

IPP insertion

Species Mandibular duct
Dipsas albifrons Present
Dipsas alternans Present
Dipsas brevifascies Absent
Dipsas bucephala Present
Dipsas catesbyi Present
Dipsas gracilis Present
Dipsas incerta Present
Dipsas indica Present
Dipsas neivai Present
Dipsas oreas Present
Dipsas pakaraima Absent
Dipsas pavonina Present
Dipsas peruana Present
Dipsas sanctijoannis Present
Dipsas temporalis Absent
Dipsas tenuissima Absent
Dipsas variegata Present
Sibon annulatus Absent
Sibon carri Absent
Sibon dimidiatus Absent
Sibon nebulatus Absent
Sibon sanniolus Absent
Sibynomorphus garmani Present
Sibynomorphus lavillai Present
Sibynomorphus mikanii Present
Sibynomorphus neuwiedi Present
Sibynomorphus petersi Present
Sibynomorphus turgidus Present
Sibynomorphus vagus Absent
Sibynomorphus ventrimaculatus Present
Sibynomorphus williamsi Present
Tropidodipsas fischeri Absent
Tropidodipsas sartori Absent

Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Infralabial gland

Infralabial gland

Infralabial gland

Infralabial gland

Infralabial gland

Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Anterior region of dentary
Infralabial gland

Infralabial gland

Connected to the gland
Connected to the gland
Parallel to the gland
Connected to the gland
Parallel to the gland
Parallel to the gland
Parallel to the gland
Connected to the gland
Connected to the gland
?

Parallel to the gland
Connected to the gland
Connected to the gland
Parallel to the gland
Parallel to the gland

?

Connected to the gland
Parallel to the gland
Parallel to the gland
Parallel to the gland
Parallel to the gland
Parallel to the gland

?

Connected to the gland
Parallel to the gland
Parallel to the gland
Connected to the gland
Parallel to the gland
Connected to the gland
Parallel to the gland

?

Parallel to the gland
Parallel to the gland
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Figure 3 Infralabial glands in Dipsadini. Lateral view of the head of Sibynomorphus turgidus (IBSP 46431) (A). Labial (B) and lingual (C) sides of
il1 and iI2 and associated buccal tissues after removal from the specimen. Abbreviations: du, ducts; d-il1, ducts of lateral, mucous infralabial gland;
d-il2, duct of ventrolateral, seromucous infralabial gland; il1, lateral, mucous infralabial gland; il2, ventrolateral, seromucous infralabial gland; fm,
floor of the mouth. Arrow points to the opening of the duct of il2 (d-il2, mandibular duct). Scale bar in all pictures=1.25 mm.

Muscles associated with the infralabial glands of Dipsadini
In all Dipsadini, both levator anguli oris (LAO) and inter-
mandibularis posterior pars posterior (IPP) muscles were
observed to be closely associated with the infralabial
glands, being adpressed to the wall of the gland or attached
to it as a compressor of the gland (Table 1). The relation
between these muscles and the infralabial glands ill and
il2, the lower jaw, and the corner of the mouth are de-
scribed below.

The LAO of Dipsadini is always functionally and mor-
phologically distinct from the adductor mandibulae exter-
nus superficialis muscle (AES; sensu Zaher [28]), and are
treated here as two separate muscular units [28]. The
well-developed LAO of goo-eating snakes is innervated by
its own anterior branch of the ramus mandibularis of the
trigeminal nerve [28]. Among all adductores externi mus-
cles, only the LAO is directly associated with the infrala-
bial glands in snail-eating dipsadines.
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Figure 4 Floor of the mouth in Dipsadini. Dipsas neivai (IBSP 70310) (A), Sibynomorphus mikanii (IBSP 70224) (B), Sibon nebulatus (MZUSP 6221)
(C), and Tropidodipsas sartorii (KU 157638) (D). Abbreviations: Ix, larynx; mt, median tubercle; mxt, maxillary tooth; sl, supralabial scale; sp,
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Figure 5 Frontal view of the head of Dipsas alternans. Openings
of the mandibular ducts (d-il2), expanded and visible laterally to

the tip of the dentaries (arrows) in Dipsas alternans (MZUSP 8833).
Scale bar=2 mm.

\

The LAO of Dipsadini is a long, parallel fibered
muscle that extend from behind the eye to the anterior
half of the lower jaw, curving around the angle of the
mouth to insert on the mandible or on the surface of
the ill. The anterolateral surface of the epimysium is al-
ways firmly attached to the buccal membrane of the cor-
ner of the mouth. Except for these few characteristics,
the LAO showed significant variation among studied
genera, being completely differentiated from the AES in
all goo-eaters, except in Tropidodipsas, Sibon, and
Atractus in which some of the more posterodorsal fibers
tend to share an aponeurosis with the more anterome-
dial fibers of the AES (Figure 1).

The LAO is anterior to the AES in Dipsas, Sibyno-
morphus, and Atractus. In two species of Atractus (A.
major and A. flammigerus), the posteriormost fibers
of the LAO are medial to the AES (Figure 12A). In
Ninia, Chersodromus, and Geophis, the anterior half
of the LAO is anterior to the AES while the posterior
fibers broadly overlap the anterior half of the AES at
their origin. The LAO is medial in Sibon and Adel-
phicos (Figures 1C, 12B). In Tropidodipsas, the two
species examined showed distinct arrangements, the
LAO being lateral to the AES in T. fischeri and med-
ial in T. sartorii (Figure 1).

In all species of Dipsas examined, the origin of the
LAO is very large, encompassing the entire postocular
region laterally. Three distinct conditions are found in
Dipsas. In Dipsas incerta, D. brevifascies, and D. tem-
poralis, the LAO arises from the entire laterodorsal
surface of the postorbital. The postorbital bone is
long, reaching the ectopterygoid ventrally. In Dipsas
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bucephala, D. indica, D. catesbyi, and D. albifrons,
the origin of the LAO extends from the base of the
postorbital to the lateral tip of the maxillary ramus of
the ectopterygoid. Dipsas neivai shows the largest
condition, with the LAO extending from the base of
the postorbital to the posterolateral edge of the max-
illa, and also encompassing the lateral tip of the max-
illary ramus of the ectopterygoid. The postorbital
being vestigial in D. neivai, the origin of the LAO is
mostly on the posterior surface of a well-developed
maxillo-postorbital ligament (Figure 1A).

The LAO integrally covers the Harderian gland, ex-
cept in D. brevifascies where the gland is visible ven-
trally to the LAO. After curving the angle of the
mouth, the LAO extends anteriorly to reach the ante-
riormost region of the dentary where the bundle ends
in a broad aponeurosis that attaches to the ventrolat-
eral edge of the anterior one-third of the dentary.
The muscle does not insert broadly on the fascia of
the infralabial gland, although it is somewhat tied by
its fascia to the dorsal surface of the gland. In all spe-
cies of Dipsas examined, the ventral (mandibular)
portion of the LAO is visible dorsally to the il2, ex-
cept in D. brevifascies where the muscle is completely
covered by the infralabial gland. At the level of the
anterior one third of the dentary, the il2 expands to
the labial edge, covering the anterior tip of the bundle
and its aponeurosis.

The LAO in Sibynomorphus is also greatly developed.
In two of the eight species examined (S. mikanii and S.
neuwiedi), the LAO arises via a large aponeurosis from
the anterior half of the dorsolateral ridge of the parietal,
extending to the distal tip of the postorbital and lateral
tip of the maxillary ramus of the ectopterygoid (Figures 1,
2). The Harderian gland is visible medially to the
aponeurosis in both species. In S. ventrimaculatus, the
aponeurotic sheet is reduced and the fibers of the LAO
cover completely the Harderian gland. In S. vagus and S.
turgidus, the origin of the LAO is less extensive, arising
only from the base of the postorbital and extending ven-
trally to the lateral tip of the maxillary ramus of the ectop-
terygoid. As in Dipsas, the LAO of Sibynomorphus curves
around the corner of the mouth, forming a funnel-shaped
bundle that inserts via an extensive aponeurosis to the
ventrolateral edge of the anterior one-third of the dentary.

The LAO differs greatly in the two species of Tropido-
dipsas examined. In T. sartorii, the origin of the muscle
is medial to both AES and Harderian gland (Figure 1D).
On the other hand, T. fischeri shows the opposite condi-
tion, with a LAO clearly lateral to the AES and Harderian
gland. In the former species, the origin of the muscle
is confined to a narrow area; the fibers arise from the
posteromedial base of the postorbital and adjacent
surface of the parietal, below the anterior fibers of the
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Figure 6 Histological sections of the head of Dipsas albifrons. Sagittal section of the head of Dipsas albifrons (MZUSP 17885); Paraffin section,
Mallory trichrome staining (A). Higher magnification focusing on the mandibular region and showing the difference in staining between the
anterior and the posterior regions of i12, composed by mucous cells (m) and seromucous cells (sm), respectively. A large duct (d-il2) connects the
posterior region of the seromucous infralabial gland (il2) to the floor of the mouth (arrowheads); Paraffin section, Hematoxylin-eosin staining (B).
Transverse section of the mandibular region showing contact between mucous and seromucous cells of the infralabial gland (il2) with its large
duct (arrowheads) localized under the muscle levator anguli oris; Paraffin section, Mallory trichrome (C). Limit between the anterior mucous cells
(m) and posterior seromucous cells (sm) of the il2; Historesin, Toluidine blue-fuchsin (D). Alcian blue, pH 2.5, histochemistry also revealing the
highly positive result for the mucous cells (m). Nuclear staining with hematoxylin; Historesin (E). PAS histochemistry revealing the highly positive
result for the mucous cells (m); Historesin (F). Bromophenol blue histochemistry revealing a positive reaction in the seromucous cells (sm), and
contrasting with the negative result of the mucous cells (m); Historesin (G). Abbreviations: cp, compound bone; d, dentary bone; d-il2, duct of
ventrolateral, seromucous infralabial gland; Hg, harderian gland; lao, muscle levator anguli oris; ng, nasal gland; oc, oral cavity; oe, oral epithelium; slg, sublingual
gland; t, tongue. Scale bar in pictures A-C=1 mm and D-G= 100 um. Panels at the upper right corner denote position of the section in A, B, C.
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Figure 7 Histological sections of the head of Dipsas indica. Sagittal section of the head of Dipsas indica (IBSP 73451); Paraffin section, Mallory
trichrome staining (A). Transversal section of the posterior region of the head (MZUSP 16695) showing infralabial gland divided in two portions
(i and i12) and muscle intermandibularis posterior pars posterior (ipp) associated with posteriormedial region of the il2 (shown in a higher
magnification in the lower right corner); Paraffin, Hematoxylin-eosin staining (B). Higher magnification of (A) focusing the anterior part of the mandibular
region to show the duct and distinct portions of il2 constituted by mucous cells anteriorly and seromucous cells posteriorly. The duct of the il2 (d-il2) is
connected to the anterior region of the mouth; Paraffin section, Mallory trichrome staining (C). Transversal section of the head at the level of the eye
(MZUSP 16695), showing the two portions of the infralabial gland (il and il2); Paraffin, Hematoxylin-eosin staining (D). Transversal section of the head at
the level of the snout (MZUSP 16695), showing opening of the duct (arrow) in the floor of the mouth; Paraffin, Hematoxylin-eosin staining (E). Abbreviations:
d, dentary; Hg, harderian gland; il1, lateral, mucous infralabial gland; il2, ventrolateral, seromucous infralabial gland; ipp, muscle intermandibularis posterior pars
posterior; mx, maxillary; n, nasal; ng, nasal gland; ns, nasal septum; s, supralabial gland; oc, oral cavity; p, parietal; pb, parabasisphenoid; re, respiratory epithelium.
Scale bar in picture A=5 mm; B, D and E =500 um; C=1 mm. Panels at the upper right comer denote position of the section in A, B, D, C.

AES. Both posterolateral fibers of the LAO and antero-
medial fibers of the AES arise from a short aponeur-
osis. After originating medially to the AES, the LAO of
T. sartorii takes an anterior position to the latter, ex-
tending ventrally towards the corner of the mouth
(Figure 1D). In T. fischeri, the LAO arises from the
anteriormost surface of the dorsolateral crest of the
parietal, extending on the dorsolateral surface of the
proximal half of the postorbital. The posteriormost fi-
bers of the LAO and the anterior fibers of the AES
arise from a common aponeurosis. In both species, the
LAO forms a fusiform bundle at the level of the corner
of the mouth that curves around the latter and inserts
on the dorsal surface of the posterior third of the infra-
labial gland. Some of the more dorsal fibers are longer
and converge to insert on a thin tendon that extends
anteriorly in parallel to the dorsal edge of the infrala-
bial gland. The tendon attaches to the skin below the
infralabial scales.

The position of the LAO in Sibon is virtually the same
as in Tropidodipsas sartorii, except in S. sanniolus in
which the more lateral and anterior fibers arise from an
aponeurosis shared with the anterolateral fibers of the
AES and from the lateral surface of the postorbital, re-
spectively. These fibers are thus anterior to the AES. How-
ever, the medial fibers that represent most of the mass of
the LAO in S. sanniolus, remain medial to the AES.

In all four genera of Dipsadini examined, the IPP origi-
nates on the lateral surface of the compound bone, at the
level of the mandibular fossa. It is a thin muscle that ex-
tends anteriorly, superficial to the neurocostomandibularis
muscle and in parallel to the mandible, to attach to the skin
lateral to the mental region but medially to the infralabial
gland (Figure 2). Both bundles of the IPP do not meet on
the midline ventrally. Instead, they are closely associated to
the fascia of the infralabial gland, in which the more lateral
epimysium of the muscle attaches. In a few specimens of D.
neivai, a significant part of the muscle overlaps the infrala-
bial gland and may act as a compressor of the gland since
the epimysium of the muscle tends to fuse with the fascia
covering the gland. In both Dipsas and Sibynomorphus (ex-
cept S. neuwiedi), in which the mental groove is lost, we

observe an unusual condition of the bundles pertaining to
the muscle intermandibularis anterior pars posterior, which
are divided in small groups of fibers that are interlaced at
the level of the ventral midline (Figure 2A,B).

The muscles LAO and IPP in the remaining goo-eating
snake genera Adelphicos, Atractus, Geophis, Ninia, and
Chersodromus

In all species of Atractus examined, the LAO is anterior to
the AES, except for the posteriormost fibers arising from
the dorsolateral ridge of the parietal that are medial to the
AES (Figure 12A). The LAO is a thin band of muscle aris-
ing from a narrow site of origin, which encompasses the
posterolateral edge of the proximal half of the postorbital
and anteriormost portion of the dorsolateral ridge of the
parietal, just posterior to the postorbital-parietal contact.
The LAO extends on a ventral and slightly posterior direc-
tion, curving around the corner of the mouth and insert-
ing on the dorsal surface of the posterior third of the
infralabial gland.

In Adelphicos veraepacis, the origin of the LAO is
medial to the AES, arising from the anteriormost por-
tion of the dorsolateral ridge of the parietal and the pos-
terolateral margin of the short postorbital. The muscle
extends ventrally and slightly posteriorly as a thin band
of fibers, curving around the corner of the mouth and
inserting on the dorsal surface of the posterior third of
the infralabial gland (Figure 12B).

In all species of Geophis examined, the LAO corre-
sponds to a thin, triangular sheet of muscle with an origin
on the dorsolateral ridge of the parietal and postorbital,
from the anterior edge of the muscle adductor mandibu-
lae externus profundus (AEP; sensu Zaher, [28]) to the tip
of the postorbital (Figure 12C). The posterior half of the
LAO arises via an aponeurosis that overlies the dorsal por-
tion of the AES. The fibers are directed dorsoventrally,
converging to form a fusiform bundle at the level of the
corner of the mouth. The site of insertion varies among
the species examined. In G. anocularis, G. rhodogaster, G.
dubius, and G. hoffmanni, the muscle terminates in an
aponeurosis that inserts on the buccal membrane and lat-
eral surface of the dentary dorsomedially to the infralabial
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Figure 8 Histological sections of the head of Sibynomorphus mikani and S. neuwiedi. Ventral view of the skinned head of Sibynomorphus
mikanii evidencing the size and location of both il1 and il2; Paraffin section, Mallory trichrome staining (A). Sagittal section of the head of Sibynomorphus
mikanii showing the position of the two portions of the infralabial gland (il and il2); Paraffin section, Mallory trichrome staining (B). PAS histochemical
reaction in a longitudinal section of the mandibular region of Sibynomorphus mikanii (MZUSP 17886) revealing the more developed portion of infralabial
gland (il2) with the duct (d-il2) running towards the anterior region. Although the whole gland reacts to PAS, mucous cells (m) in the anterior region and
the duct (d-il2) are much more positive; Paraffin section (C). Transverse section of the mandibular region of Sibynomorphus mikanii (MZUSP 17882)
showing the infralabial gland divided in il1 and il2, and evidencing the duct of il2 (d-il2); Paraffin section, Hematoxylin-eosin staining (D). Transverse
section of the head of Sibynomorphus neuwiedi (MZUSP 17225) evidencing a duct in il1; Paraffin section, Hematoxylin-eosin staining (E). Transverse
section of the head of Sibynomorphus neuwiedi showing il1 and il2 separated by the bundle of the muscle levator anguli oris; Paraffin
section, Hematoxylin-eosin staining (F). Abbreviations: cp, compound bone; d, dentary bone; d-il1, ducts of the lateral, mucous infralabial
gland; d-il2, duct of the ventrolateral, seromucous infralabial gland; e, eye; f, frontal; Hg, Harderian gland; il1, lateral, mucous infralabial gland; il2, ventrolateral,
seromucous infralabial gland; lao, muscle levator anguli oris; m, mucous cells; mx, maxillary; oc, oral cavity; oe, oral epithelium; s, supralabial gland; slg, sublingual
gland; t, tongue. Scale bar in pictures A-D and F=1 mm and E =50 um. Panels at the upper right corner denote position of the section in B, C, F.

gland. The epimysium of the LAO tends to be firmly at- muscle inserts broadly on the dorsal and dorsomedial
tached to the dorsal surface of the posterior region of the  surfaces of the posterior region of the infralabial gland
infralabial gland. In G. brachycephalus and G. zeledoni, the ~ (Figure 12C). The variation regarding the insertion site of
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Figure 9 Histological sections of the infralabial glands of Dipsas neivai. Two distinct horizontal planes from serial histological sections of the
head of Dipsas neivai (MZUSP 14665) showing part of the larger infralabial gland (il2) with the duct (d-il2) in the central area (A), and part of the
smaller and thinner mucous infralabial gland (il1), extending along the margin of the lip (B), and their relationship with muscles levator anguli oris
(lao) and intermandibularis posterior pars posterior (ipp). While the larger seromucous infralabial gland (il2) is embraced by both muscles, the thinner
gland (il1) is connected only with the muscle levator anguli oris; Paraffin sections, Hematoxylin-eosin staining (A-B). Longitudinal historesin sections of
iI2 focusing the duct (d-il2) and the surrounding acini (C-F). Toluidine blue-fuchsin (C). Bromophenol blue histochemical reaction, indicating a positive
result in most parts of the cells that form the acini, characterizing their seromucous condition (sm) (D). Alcian blue pH 2.5 histochemical reaction revealing
acid mucous cells (m) within the acini and in the duct of ventrolateral, seromucous infralabial gland (d-il2); Nuclear staining with hematoxylin (E). Alcian
blue pH 2.5 + PAS, confirming the result shown in D and E (F). Abbreviations: il1, lateral, mucous infralabial gland; il2, ventrolateral, seromucous infralabial
gland; slg, sublingual gland; m, mucous cells; sm, seromucous cells. Scale bar in pictures A-B= 15 mm and C-F = 100 um. Panel at the upper right corner
of A denotes position of the sections in A and B.
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Figure 10 Histological sections of the head of Sibon nebulatus. Sagittal section of the head of Sibon nebulatus (MZUSP 9316); Paraffin, Hematoxylin-
eosin staining (A). Mandibular region showing infralabial gland constituted by mucous (m) and seromucous cells (sm); Paraffin, Hematoxylin-eosin staining
(B). Detail of the duct from infralabial gland opening in the oral cavity; Paraffin, Hematoxylin-eosin (C). Epithelium of the infralabial gland constitute by mucous
(m) and seromucos cells (sm); Paraffin, Hematoxylin-eosin staining (D). Histochemical reaction of the bromofenol blue showing positivity for the posteriormost
cells of the infralabial glands; Paraffin (E). Transversal section of the head at the level of the eyes showing infralabial gland (il) and its association with the muscle
levator anguli oris (lao); Paraffin, Hematoxylin-eosin staining (F). Transversal section of the head at the level of the snout showing infralabial glands with its tubules
(tu) and ducts (du) distended to the anterior portion of the mouth; Paraffin, Hematoxylin-eosin staining (G). Abbreviations: cp, compound bone; d, dentary; d-i,
ducts of the infralabial gland; dslg, ducts of the sublingual gland; e, eye; f, frontal; Hg, Harderian gland; ils, infralabial scales; Jo, Jocobson'’s organ; lao, muscle fevator
anguli oris; mx, maxillary; n, nasal bone; nc, nasal cavity; ng, nasal gland; oc, oral cavity; oe, oral epithelium; sl, supralabial gland; slg, sublingual gland. Scale
bar=1 mm (A, F and G); 500 um (B); 200 um (C and E); 50 um (D). Panels at the upper right corner denote position of the section in A, F, G.

the LAO seems to be correlated with the glandular differ-
entiation present on the posterior region of the infralabial
gland. In G. brachycephalus and G. zeledoni, where the
LAO inserts on the infralabial gland, the gland shows two
distinct anterior and posterior regions externally that are
easily distinguished by their color and celular types.

The LAO of Ninia resembles the condition found in
Geophis, with the significant difference that the muscle
does not insert on the infralabial gland (except in one
specimen of N. maculata and one of N. atrata in which
the more lateral fibers insert on the dorsolateral surface
of the gland). The LAO is a thin band of muscle origin-
ating on the dorsolateral ridge of the parietal and post-
orbital, from the middle of the AES to the proximal
dorsolateral surface of the postorbital. The posterior half
of the muscle overlaps the anterior half of the dorsal
portion of the AES. Fibers extend ventrally to curve
around the corner of the mouth and converge to termin-
ate on a broad aponeurosis that attaches to the lateral
surface of the dentary. The LAO of Chersodromus shows
the same condition of Ninia (Figure 13A,C).

In the goo-eating snakes Adelphicos, Atractus, Geo-
phis, Ninia, and Chersodromus, the IPP originates on
the lateral surface of the compound bone, passing ante-
romedially as a thin bundle to attach to the ventral sur-
face of the skin posteriorly to the mental region, with
only some fibers reaching their counterpart at the mid-
line. The epimysium of the muscle does not contact the
infralabial gland.

Phylogenetic relationships of Dipsadinae

Our hypothesis of dipsadine interrelationships is based
on Maximum Likelihood (ML) and Bayesian (BI) ana-
lyses of 576 sequences from five mitochondrial and six
nuclear genes in 87 terminal taxa (including 26 outgroup
and 61 ingroup taxa; see Materials and Methods). Our
study included a substantially denser sample of dipsa-
dine species compared to previous ones [29-31]. The ex-
tended dipsadine sampling is meant to provide a
thorough test of the monophyly of the tribe Dipsadini,
thereby offering a more rigorous background for the
resulting hypothesis of interrelationships of its constituent
parts.

Both ML (-InL =-65357.67; Figure 14) and BI trees
(majority rule consensus of 8500 trees after the burn-in;
Figure 15) yield very similar results, differing only in the
position of Tretanorhinus variabilis, Trimetopon gracilis,
Nothopsis rugosus, and in the affinities between some spe-
cies within the genera Atractus and Dipsas (see Additional
file 3 and Additional file 4 for the complete tree topolo-
gies, including all outgroup taxa). We retrieved only 20
well-supported clades (i.e., BML and BPP frequencies of
70% and 0.8 or more, respectively), which correspond
to only 33% of all possible clades. Most higher and
lower-level interrelationships are not strongly supported,
with the notable exception of the subfamily Dipsadinae
(Figures 14, 15). Both ML and BI analyses recovered a
well-supported Dipsadinae with a BML of 87% and a BPP
of 1.0. Tantalophis discolor is positioned as the sister
group of all other dipsadines [32], with low BML (<70%),
but high BPP (0.93), and Amastridium veliferum, Conio-
Phanes fissidens, and the genus Rhadinaea form a poorly
supported clade (BMF <70% and BPP <90%) that repre-
sents the sister group of the remaining dipsadines. Within
that clade, Coniophanes fissidens is retrieved as the sister
group of the genus Rhadinaea, represented in this analysis
by R. flavilata and R. fulvivittis. These two clades are poorly
supported in both analyses (BML <70% and BPP <90%).

Both analyses recovered a poorly supported clade
(BML <70%; BPP <0.8) grouping the remaining dipsa-
dines distributed in five larger assemblages: 1) “Clade
A”, formed by the genera Nothopsis, Imantodes, and
Leptodeira; 2) “Clade B”, composed by Trimetopon and
the “nightsnakes” genera Hypsiglena and Pseudolepto-
deira; 3) “Clade C”, formed by Adelphicos quadrivirgatus,
Hydromorphus concolor, and Tretanorhinus nigroluteus;
4) “Clade D”, composed by the goo-eaters Geophis and
Atractus; 5) and “Clade E”, including Ninia and the
snail-eating snakes Tropidodipsas, Dipsas, Sibon, and Siby-
nomorphus. Clades A, B, and D were retrieved with very
low BML and BPP supports (<70%/<0.8), while Clades
C and E received low to moderate BML (<70% and
70%, respectively) but high BPP supports (0.88 and 1.0,
respectively). The genera Tretanorhinus, Imantodes, Geo-
phis, Dipsas, and Sibynomorphus are not non-monophyletic
in both ML and BI analyses, and Hypsiglena appears as
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corner denote position of the section in A.

Figure 11 Histological sections of the head of Tropidodipsas sartorii. Sagittal section of the head of Tropidodipsas sartorii (USNM 561067)
showing supra (sl) and infralabial (il) glands, and emphasizing the large duct (d-il) distended along the medial surface of the infralabial gland;
Paraffin, Hematoxylin-eosin staining (A). Alcian blue pH 2.5 reaction showing mucous cells (m) and the large duct (d-il) distended in medial
surface of the infralabial gland; Paraffin (B). Detail of the acini of the infralabial gland and its positivity to alcian blue pH 2.5; Paraffin (C). Acini in
the posteriormost portion of the gland constituted by seromucous cells (sm) strongly stained by hematoxylin-eosin and mucous cells (m) slightly
stained (D). Abbreviations: Hg, Harderian gland; sl, supralabial gland. Scale bar=1 mm (A); 200 um (B); 50 um (C and D). Panel at the upper right

non-monophyletic in the ML analysis. The genera Rhadi-
naea, Leptodeira, and Atractus are recovered as monophy-
letic in both analyses, but only Atractus receives moderate
BML and high BPP support values (72%/1.0).

Within Clade A, Nothopsis rugosus is recovered as the
sister group of a monophyletic tribe Imantodini (sensu
Myers [33]) in the ML analysis, whereas in the BI ana-
lysis Nothopsis appears nested within the latter as the
sister group of Imantodes inornatus. The genus Lepto-
deira is recovered as monophyletic, albeit with weak
support. Similarly, within Clade B, Trimetopon gracile is
found nested inside the night-snake genus Hypsiglena in
the ML analysis, whereas in the BI analysis it clusters
with Pseudoleptodeira nigrofasciata as the sister group
of a monophyletic Hypsiglena.

Tretanorhinus variabilis clusters as the sister group of
Clade A in the BI analysis whereas in the ML analysis it
is placed as the sister group of a weakly supported clade
formed by Clades B, C, D, E, and Cryophis.

Surprisingly, Cadle and Greene’s [18] goo-eating snakes
are recovered as a polyphyletic assemblage in both analyses,
with Adelphicos quadrivirgatus included in Clade C as the
sister group of Hydromorphus concolor and Tretanorhinus
nigroluteus, whereas the remaining goo-eating genera
(Clades D and E) cluster together forming a clade that
shows low BML support (<70%) but high BPP support
(0.98). However, although our molecular tree points to a
polyphyletic goo-eating assemblage, weak support for the
nodes separating Adelphicos from the other goo-eaters and
the expressive amount of morphological traits shared by
both groups suggest caution interpreting these results.
Within Clade C, H. concolor and T. nigroluteus form a
monophyletic group of Central American aquatic snakes
[29] strongly supported by both BML and BPP values (100/
0.88). Clade C appears in both analyses as the sister group
of the weakly supported clade formed by Cryophis and
Clades D and E.

Cryophis hallbergi is recovered in both analyses as the
sister group of a clade formed by the remaining goo-
eating genera Ninia, Atractus, Geophis, Dipsas, Sibyno-
morphus, Sibon, and Tropidodipsas, albeit with weak
support (<70%/<0.8). The latter clade is recovered with
low BML (<70%) but high BPP (0.98) support values.
Within that clade, very few nodes enjoy high support

values and each probabilistic approach obtained a unique
topology. However, some relationships are corroborated
by both analyses. As previously shown by Grazziotin el al.
[30], the goo-eating genera Ninia, Atractus, Geophis, Dip-
sas, Sibynomorphus, Sibon, and Tropidodipsas form two
monophyletic assemblages: Clade D, composed by the
genera Geophis and Atractus with low support values
(<70%/<0.8), and Clade E composed by Ninia, Dipsas,
Sibynomorphus, Sibon, and Tropidodipsas with moderate
to high support values (70%/1.0). In both analyses, mono-
phyly of Geophis is not recovered, with Geophis godmani
and G. carinosus positioned as successive sister groups of
Atractus. Monophyly of Atractus is retrieved with moder-
ate to high support values (72%/1.0), although the rela-
tionship among the species of the genus received low
support in both analyses. Ninia atrata is positioned as the
sister group of Dipsadini, with the latter receiving surpris-
ingly low support (<70%/<0.8). Within the tribe Dipsadini,
Sibon nebulatus and Tropidodipsas sartorii form a moder-
ately well supported clade (70%/0.92) that is retrieved as
the sister group of a clade composed by Dipsas and Siby-
nomorphus. The latter clade is obtained in both analyses,
with low BML (<70%) but high BPP (0.98) support values,
and recovers both Dipsas and Sibynomorphus as paraphy-
letic in respect to each other. Within that paraphyletic as-
semblage, the following well-supported clades are present
in both analyses: 1) Sibynomorphus turgidus and S. mika-
nii (78%/1.0), 2) Dipsas neivai and D. variegata (99%/1.0),
3) S. garmani and S. neuwiedi (100%/0.99).

Discussion

The subfamily Dipsadinae is a well-corroborated mono-
phyletic group of Neotropical snakes that has been re-
cently redefined on the basis of both molecular and
morphological evidence [12]. However, affinities among
dipsadine genera are still largely unknown [30]. Some
authors suggested monophyletic groups within this
lineage, such as the “niniiforms” [34], the Leptodeira-Eri-
diphas, and the Sibon-Geophis clades [35]. Recently,
Mulcahy [32] provided molecular evidence for a clade
including the nightsnakes Eridiphas, Hypsiglena, and
Pseudoleptodeira, and another clade containing the genera
Leptodeira and Imantodes. Mulcahy’s clade of nighstsnakes
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Figure 12 Head muscles and glands of Dipsadinae. Lateral view of the head of Atractus major (IBSP 43395) (A), Adelphicos veraepacis (KU
187320) (B), and Geophis zeledoni (KU 63822) (C), showing location of the infralabial gland (il) with respect to the head muscles and mandible.
Abbreviations: aem2, muscle adductor mandibulae externus medialis; aep, muscle adductor mandibulae externus profundus; aes, muscle adductor
mandibulae externus superficialis; ap.aes, aponeurose of muscle adductor mandibulae externus superficialis; Hg, harderian gland; ipp, muscle
intermandibularis posterior pars posterior; 1ao, muscle levator anguli oris; sl, supralabial gland. Scale bar in all pictures =5 mm.

is recovered in our phylogenetic analysis with the genus
Trimetopon nested within, although with low support
(Figures 14 and 15).

According to Savitzky [34], the “niniiform” clade in-
cludes the genera Amastridium, Chersodromus, Dia-
phorolepis, Emmochliophis, Ninia, Nothopsis, Synophis,
and Xenopholis. Recent molecular analyses pointed out
the polyphyletic nature of niniiforms, with at least Ninia,
Xenopholis and Nothopsis nesting distantly from each
other within the dipsadid radiation [12,29-31]. Cadle and
Greene [18] were the first to explicitly suggest a close af-
finity of Ninia with the tribe Dipsadini, by recognizing a
putative clade of seven Central American xenodontine
genera of goo-eating snakes that feed exclusively on soft-
bodied invertebrates. Interestingly, recent phylogenetic
analyses have shown Ninia invariably nested within the
Tribe Dipsadini, suggesting a paraphyletic condition for
the tribe [12,29,30]. However, our analysis retrieved a
monophyletic Dipsadini, with Ninia positioned outside
the latter clade. This result is congruent with the morpho-
logical evidence at hand, since Ninia lacks the specializa-
tions shown by Dipsadini although most species are
known to feed mainly on slugs [18] (Additional file 1).

Surprisingly, Cadle and Greene’s [18] goo-eating snakes
were recovered as a polyphyletic assemblage in our ana-
lysis, with the cryptozoic Adelphicos clustering outside the
clade formed by the remaining goo-eaters (i.e., Atractus,
Geophis, Ninia, Dipsas, Sibon, Tropidodipsas, and Siby-
nomorphus), as the sister group of Hydromorphus and Tre-
tanorhinus (Clade C in Figure 14). The latter two genera
form a strongly supported clade of Central American
aquatic snakes [29]. Pyron et al. [29], who included Ade-
Iphicos for the first time in a molecular phylogenetic
analysis, found the same clade formed by Adelphicos,
Hydromorphus, and Tretanorhinus, but did not comment
on this unexpected result. Our larger sample of Dipsadines
failed to support a phylogenetic affinity of Adelphicos with
the other cryptozoic goo-eating snakes traditionally associ-
ated with it (Atractus and Geophis), suggesting that their
specialized feeding habits and morphology evolved inde-
pendently within Dipsadinae (Figures 14 and 15).

Our results also suggest that the loss of grooved enlarged
maxillary teeth and loreal scales, pointed out as evidence
in support of the monophyly of the goo-eaters [20], should
also be considered homoplastic in Adelphicos. However, al-
though our molecular tree points to a polyphyletic goo-
eating assemblage, weak support values for the nodes

separating Adelphicos from the other goo-eaters and the
expressive amount of morphological traits shared by both
groups indicate that these results are still tentative.

The remaining goo-eating snakes form a moderately
supported clade (Figures 14, 15) with low BML but high
BPP support values. This monophyletic component, num-
bered 1 in Figure 14, includes the genera Geophis and
Atractus, on the one hand, and Ninia, Tropidodipsas,
Sibon, Dipsas, and Sibynomorphus, on the other. Both
monophyletic components are described as Clades D and
E in our Results, and are depicted in green and blue in
Figure 14, respectively. While Clade D is formed by
cryptozoic species that feed mainly on earthworms, Clade
E (including Ninia) is essentially terrestrial or arboreal and
known to be mainly molluscivorous (Additional file 1).

However, with the exception of Sibynomorphus, there
have been reports of non-molluscan prey being exten-
sively consumed in captivity or found in stomach con-
tents and fecal samples of species from the remaining
four genera in Clade E [36]. Non-molluscan prey items
comprise earthworms (in Dipsas bucephala, D. elegans,
Ninia sebae, Sibon annulatus, S. argus, S. faciata, S.
longifrenis, Tropidodipsas fisheri, T. philippii), arthropod
remains (in Dipsas catesbyi, D. indica), leeches (in Ninia
sebae), amphibian eggs (Sibon longifrenis and S. argus),
and Amphisbaenidae (Ninia sebae) (Additional file 1).
On the other hand, genera in Clade D seem to feed
mainly on earthworms (Additional file 1). Nonetheless,
some authors also described the presence of arthropod
remains in the stomach content of Geophis incomptus
(and there are indications that this seems to be a com-
mon item in several species of Atractus), acari (in Atrac-
tus latifrons and A. torquatus), slugs (in Atractus
carrioni, G. nigrocinctus, and G. pyburni), leeches (in G.
nasalis), and vertebrate remains such as lizards scales (in
A. pantostictus) (Additional file 1).

Although the large number of specializations found in
snail-eating snakes associated with molluscivory points
to a single acquisition from a common ancestor [37], a
closer inspection of the anatomy of these snakes suggests
a more complex evolutionary scenario. In the phylogenetic
tree depicted in Figure 14, three arrows, numbered from 1
to 3, indicate the nodes in which key evolutionary novel-
ties arose within the goo-eating radiation and led to the
highly specialized protein-secreting delivery system de-
scribed herein in snail-eating snakes. Some of these novel-
ties also seem to have appeared homoplastically in the
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Figure 13 Head muscles and glands of Dipsadinae. Lateral view of the head of Chersodromus liebmanni (USNM 109932) (A), Enulius flavitorques
(KU 174188) (B), and Ninia atrata (AMNH 59426) (C), showing the location of infralabial gland (il) with respect to the head muscles and mandible.
Abbreviations: aes, muscle adductor mandibulae externus superficialis; aem?2, muscle adductor mandibulae externus medialis; aep, muscle adductor mandibulae
externus profundus; ap.aes, aponeurose of muscle adductor mandibulae externus superficialis; Hg, harderian gland; ipp, muscle intermandibularis posterior pars
posterior; lao, muscle levator anguli oris; n, nasal gland; pm, premaxillary gland; sl, supralabial gland; sr, superior rictal gland. Scale bar in all pictures =5 mm.

cryptozoic genera Adelphicos and Geophis (arrows with an
asterisk in their numbers in Figure 14) [17].

According to our dissections and based on the phylo-
genetic hypothesis in Figure 14, a fully individualized
LAO that attaches ventrally to an enlarged and partially
seromucous infralabial gland evolved independently in
the genus Adelphicos (Arrow 1*) and in the common an-
cestor of the remaining goo-eating snakes, indicated by
Arrow 1 in Figure 14, allowing these snakes to secrete
and discharge mainly protein secretions into their mouth
and prey. The clade Dipsadini, shown by Arrow 2 in
Figure 14, is characterized by an hypertrophied LAO
and an extensively folded and loose epithelial tissue cov-
ering the floor of the mouth, two synapomorphies that
confer more flexibility and strength to mandibular move-
ments. Arrow 3 corresponds to the node of the common
ancestor of the genera Dipsas and Sibynomorphus, in
which evolved a divided infralabial gland with a reduced
ill1 and a distinct, well developed il2 that discharges its
protein secretion through a single large duct opening in
the epithelium of the mouth floor at the level of the inter-
mandibular raphe, an extended LAO that inserts via an
aponeurotic tendon on the lateral surface of the tip of the
dentary, and a heavily folded epithelium that accom-
modates the large LAO laterally to the dentary. Two
distinct infralabial portions (ill and il2) also evolved inde-
pendently in the genus Geophis as depicted in Figure 14
(Arrow 3*). However, the condition in Geophis shows sev-
eral important differences from the one described in Siby-
nomorpus and Dipsas, the more important ones being that
the larger medial duct in the il2 of Geophis represents a
real lumen that accumulates secretion and the muscle
compressing the il2 corresponds to the muscle adduc-
tor mandibulae externus medialis pars posterior (AMEM,
sensu Zaher [28]) instead of the IPP or LAO [17]. The
paraphyletic condition of Geophis shown in our phylogen-
etic analysis may suggest that the divided condition of the
infralabial gland and specializations of the il2 in that genus
were secondarily lost in Atractus. However, we suspect
that a better sampling of Geophis will likely alter this re-
sult, and prefer to view any conclusion regarding this
group as premature.

Conclusions
Although chemical properties and some anatomical as-
pects of the secretion delivery mechanism in Dipsadini

could be inferred from the histological, morphological,
and behavioral data, the exact role of the Dipsadini
infralabial secretion and its use during predation in mol-
luscs and other invertebrates is still largely unknown.
Several authors hypothesized that toxins secreted by the
infralabial glands of Dipsadini are probably used in some
envenomation function or in assisting in the detachment
of the snails from their shells [10,14,38,39]. However,
as shown by Sazima [39] and here (video provided as
Additional file 5), Dipsas and Sibynomorphus always ex-
tract the snail through a sudden strike followed by a se-
quence of fast alternating insertions of the mandible
inside the shell that are meant to rapidly extract the
snail and ingest it in the same sequence ([39]; Additional
file 5). Such burst of mandibular movement results in a
fast mechanical extraction that does not seem to depend
on a chemical reaction of any kind. Similarly, observa-
tions made with species of the cryptozoic genus Atractus
have shown that these snakes capture and ingest their
prey through a sequence of fast, alternating movements
of their mandible and do not seem to depend on any
chemical aid from the protein secretion of the infralabial
glands to subdue their prey.

As in Geophis [17], the presence of a seromucous il2
that is not functionally associated to a specialized tooth
row but rather opens loosely in the epithelium of the
mouth suggests a function that is likely to be directed to
mucus control and prey ingestion rather than prey en-
venomation. Such function may have evolved associated
to a seromucous condition of the infralabial gland ill in
the common ancestor of goo-eating snakes as a system to
control unusual flow of mucus and assist in the ingestion
of elongate, flexible and highly viscous preys (Figure 14).
Evolution of a secretory system specialized in mucus con-
trol and prey ingestion, instead of simple prey envenom-
ation, is here thought to represent a key element for the
success of goo-eating snakes in the Neotropics.

Methods

We used throughout the text the term “snail-eating
snakes” to refer to the tribe Dipsadini that comprises the
genera Dipsas, Sibon, Sibynomorphus, Plesiodipsas, and
Tropidodipsas, and the term “goo-eating snakes” to refer
to the larger group that comprises the snail-eating
snakes and the genera Adelphicos, Atractus, Chapino-
phis, Chersodromus, Geophis, Ninia, and Omoadiphas
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[18,20]. The term “goo-eating snakes” will be used only
for convenience since it appears to represent a paraphy-
letic lineage. Also, monophyly of Tropidodipsas is still
controversial [40]. However, we followed Wallach [41]

that resurrected Tropidodipsas to accommodate five spe-
cies (annulifera, fasciata, philippii, sartorii, and zweifeli)
previously referred to Sibon. We also recognize herein
the subfamily Dipsadinae as defined by Zaher et al. [12].
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Morphological analyses

Representatives from four of the five known genera of
Dipsadini were analyzed. Only Plesiodipsas was not
available for dissection. However, Harvey et al. [22] pro-
vided descriptions of the head muscles and glands of the
species. We dissected the head of 16 species of Dipsas,
five Sibon, eight Sibynomorphus, and two Tropidodipsas,
totalling 31 species of Dipsadini (see Additional file 2).
Additionally to the “snail-eating” taxa, we also dissected
32 species of the goo-eating genera Adelphicos, Atractus,
Chersodromus, Geophis, and Ninia, as well as 31 repre-
sentatives of 29 additional genera of Dipsadinae (see
Additional file 2).

All dissections and drawings were performed under a
dissecting microscope Olympus SZX 12 equipped with a
camera lucida. Specimens dissected in this study belong
to the following collections: American Museum of Nat-
ural History, New York (AMNH); Instituto Butantan,
Sao Paulo (IBSP); Museu Ecuatoriano de Ciencias Natur-
ales, Quito (MECN); Museu Paraense Emilio Goeldi,
Belém (MPEG); Museu de Zoologia da Universidade de
Sao Paulo (MZUSP); Museum of Natural History, Uni-
versity of Kansas, Lawrence (KU); Museum of Natural
Science, Louisiana State University, Baton Rouge (LSUMZ);
National Museum of Natural History, Washington (USNM);
Royal Ontario Museum (ROM).

Studies on the superficial soft tissue morphology of the
mouth in snakes are scarce and have been directed to the
palate rather than the floor of the mouth. McDowell [42]
and Groombridge [43] offered some information on the
soft tissue anatomy of the floor of the mouth of snakes,
and we follow here their terminology. Glandular termin-
ology follows Taub [13], Kochva [3], and Underwood [8].
Terminology for the muscles of the intermandibular re-
gion of snakes follows Langebartel [44] and Groombridge
[43]. Terminology for the adductores externi muscles is
still in dispute among authors [28,45,46]. We follow here
the arrangement suggested by Zaher [28].

Molecular phylogenetic analysis

Our data matrix was composed by 87 terminal taxa and
501 sequences downloaded from GenBank for five mito-
chondrial (12§, 16S, cytb, nd2, nd4) and six nuclear genes
(bdnf, c-mos, jun, nt3, ragl, rag2) (see Additional file 6 for
Genbank accession numbers). When multiple sequences
were available in GenBank for a given taxon, the most
complete sequence was selected for inclusion. We also
produced 75 additional sequences aiming to improve the
completeness of our matrix. We used 26 outgroup termi-
nals (19 Xenodontinae, three Carphophiinae, and three
Natricidae). Sixty-one Dipsadinae terminals composed the
ingroup, representing an increase of 25 species in respect
to the taxon sampling used by Pyron et al. [29] and 31
species to the one used by Grazziotin et al. [30].
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Primers and PCR protocols for partial amplification of
genes 12§, 16S, cytb, bdnf, and c-mos were those de-
scribed in Grazziotin et al. [30]. We used the primers
and protocols described in Vidal and Hedges [47], Noonan
and Chippindale [48], and Chiari et al. [49] to amplify
fragments for the nuclear genes jun, nt3, and ragl, re-
spectively. PCRs were purified with shrimp alkaline phos-
phatase and exonuclease I (GE Healthcare, Piscataway, NJ,
USA) and sequences were processed using the DYEnamic
ET Dye Terminator Cycle Sequencing Kit in a MegaBACE
1000 automated sequencer (GE Healthcare) following the
manufacturer’s protocols. Both strands were sequenced
for all fragments and sequences were assembled using
Geneious 5.5 [50].

The multiple sequence alignment process implemented
in MAFFT [51] was applied for the rRNA sequences using
the iterative refinement method implemented in the E-
INS-I algorithm [52]. Otherwise, all sequences for the cod-
ing genes were translated to amino acids and aligned
based on the Gonnet series matrix implemented in Clustal
X [53], and subsequently retro-translated to nucleotides.
We concatenated the rRNAs with the retro-aligned coding
genes, totalizing 9169 bps. All gaps were coded as missing
data.

The concatenated matrix was analyzed by maximum
likelihood (ML) and Bayesian inference (BI). We fol-
lowed Grazziotin et al. [30] and split our matrix to allow
the use of different model parameters for each codon
position for the coding genes, and for each rRNA se-
quence. We carried out the ML analysis using RAxML
7.2.8 [54]. The GTRGAMMA model was used for all
partitions, as recommended in the program documenta-
tion. Forty RAS were built and the trees were swapped
using LSR algorithm. To access the bootstrap frequen-
cies for the ML analysis (BML), one thousand pseudore-
plications of non-parametric bootstrap were performed
using the Cluster hosted at the Laboratério de Alto
Desempenho — Pontificia Universidade Catdlica do Rio
Grande do Sul (LAD-PUCRS). We used MrBayes 3.1.2
[55] to implement BI analyses. Two independent runs
with 11 million generations for four chains with a tempe-
rature of 0.05 were performed, sampling each 1000™ gen-
eration. The prior probability densities for substitution
rates and for stationary nucleotide frequencies of the rate
matrix were selected as suggested by the MrModeltest
analysis. A uniform prior was set for topology and the de-
fault unconstrained exponential prior was set for branch
length parameter. Only the topology and branch lengths
were treated as linked parameters among partitions. The
log likelihood trace was accessed using Tracer v1.5 [56]
and the cutoff for the burn-in was determined as the point
at which the trace became stationary. We accessed the
average standard deviation of split frequencies to assure
the convergence between different MrBayes runs and the
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Effective Sampling Sizes (ESS) for each parameter were
inspected using the program Tracer. A 50% majority-rule
consensus tree was constructed using the software TreeAn-
notator v.1.5.4 [57]. Frequency of nodal resolution for each
clade was termed a Bayesian Posterior Probability (BPP).

Histology and histochemistry

Histological procedures were performed in 28 adult individ-
uals belonging to the snail-eating genera Dipsas, Sibon, Siby-
nomorphus, Tropidodipsas and the remaining goo-eating
genera Atractus, Geophis, Ninia, and Chersodromus. We also
performed histological sections in seven individuals from the
dipsadine genera Coniophanes, Hypsiglena, Imantodes, Lep-
todeira, and Urotheca (see Additional file 2). Histological
sections were performed on previously fixed specimens
housed in several scientific collections. Heads were skinned
from the nostril to the neck and removed from the speci-
mens at the level of the first cervical vertebra. Specimens
and their head skin were thus returned to their jar in the col-
lection. Heads from cientific collections were post-fixed with
Bouin and submitted to decalcification and serial sections in
the same way as live individuals (see below).

Additionally, live adult individuals of Dipsas neivai, D.
indica, D. albifrons, Sibynomorphus mikanii, and S. neu-
wiedi were used in this work for more accurate histo-
logical procedures (see Additional file 2). Live specimens
were provided by the Laboratério de Herpetologia do
Instituto Butantan. They were euthanized through an in-
traperitoneal injection of sodium thiopental (30 mg/Kg).
We removed either the complete head or only the infra-
labial glands of euthanized specimens for architectural
analysis of the glands and associated duct systems and
muscles. All specimens were preserved in formalin and
deposited in the herpetological collections of the Insti-
tuto Butantan and Museu de Zoologia da Universidade
de Sao Paulo.

The heads were fixed in Bouin fixative for 24 hours and
posteriorly submitted to decalcification in 4.13% aqueous
EDTA, pH 7.2, renewed every other three days, and kept
in constant stirring for 60 days. The heads were then sagit-
tally divided in two halves, dehydrated in ethanol, embed-
ded in paraffin, and submitted to serial, sagittal or
horizontal sectioning. Sections of 7 um were obtained in a
Microm HM 340 E microtome with disposable steel
blades. All sections were submitted to hematoxylin-eosin
(HE) staining for general study of the tissues, and to Mal-
lory trichrome staining [58] for the specific identification
of collagen and muscular fibres and epithelia.

Dissected glands were fixed during 24 hours in 4%
paraformaldehyde in PBS 0.1 M, pH 7.2, dehydrated in
ethanol and embedded in historesin (glycol methacryl-
ate, Leica, Nussloch/Heidelberg, Baden-Wiirttemberg,
Germany). Sections of 2 pm were obtained in the same
Microm HM 340 E microtome mounted with glass
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knives. Some sections were stained with toluidine blue-
fuchsin [59] for a general view of the glandular condition.
The remaining historesin sections were subjected to the
following histochemical staining procedures [60]: periodic
acid-Schiff (PAS), alcian blue pH 2.5 and combined PAS
and alcian blue pH 2.5 [61,62] for the identification of
neutral (PAS) and acid (alcian blue) mucosubstances, and
bromophenol blue for the identification of proteins.

Photomicrographs were obtained with an Olympus
BX51 microscope and an Olympus SZ stereomicroscope
(Olympus, Tokyo, Japan) equipped with a digital camera
and with the software Image-Pro Express (MediaCyber-
netics, Maryland, USA).

Availability of supporting data
The matrix is also deposited in the treeBase data
repository (http://treebase.org/treebase-web/home.html),
available through http://treebase.org/treebase-web/search/
study/summary.html?id=15015.

Referee’s link: http://purl.org/phylo/treebase/phylows/
study/TB2:515015?x-access-code=a7076770a44.cfb15c2b2
fad39178b5da&format=html.

Additional files

Additional file 1: A list of prey items recovered from the literature
on dipsadine snakes.

Additional file 2: A list of specimens used in this study.

Additional file 3: Tree estimated from a Maximum Likelihood analysis
of 11 concatenated genes using RAXML 7.2.8. All outgroups are shown
in the tree. Bootstrap values greater than 70% are given above each node.

Additional file 4: Fifty percent Majority-rule consensus tree estimated
from a Bayesian analysis of 11 concatenated genes using MrBayes 3.1.2.
All outgroups are shown in the tree. Bayesian Posterior Probability
frequencies greater than 0.80 are given above each node.

Additional file 5: A movie showing the predation sequence of an adult
specimen of Dipsas albifrons on a snail of the genus Bradybaena,
filmed in captivity at the biotherium of the Laboratério de Biologia
Celular of the Instituto Butantan. Specimen was collected in Jaragué do
Sul, State of Santa Catarina, Brazil (body length = 525 mm; tail length = 183 mm).

Additional file 6: A List of DNA sequences used in this study, with
GenBank accession numbers.
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