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abstract: The ecological traits of organisms may predict their ge-
netic diversity and population genetic structure and mediate the ac-
tion of evolutionary processes important for speciation and adapta-
tion. Making these ecological-evolutionary links is difficult because it
requires comparable genetic estimates from many species with dif-
fering ecologies. In Amazonian birds, habitat association is an im-
portant component of ecological diversity. Here, we examine the link
between habitat association and genetic parameters using 20 pairs of
closely related Amazonian bird species in which one member of the
pair occurs primarily in forest edge and floodplains and the other
occurs in upland forest interior. We use standardized geographic
sampling and data from 2,416 genomic markers to estimate genetic
diversity, population genetic structure, and statistics reflecting de-
mographic and evolutionary processes. We find that species of up-
land forest have greater genetic diversity and divergence across the
landscape as well as signatures of older histories and less gene flow
than floodplain species. Our results reveal that species ecology in the
form of habitat association is an important predictor of genetic di-
versity and population divergence and suggest that differences in di-
versity between floodplain and upland avifaunas in the Amazon may
be driven by differences in the demographic and evolutionary pro-
cesses at work in the two habitats.

Keywords: population genetics, phylogeography, habitat selection,
ultraconserved elements, trait-dependent diversification, Amazon
rain forest.

Introduction

Genetic and phenotypic variation within species determines
how they respond to environmental change (Willi et al.
2006), their propensity to form new species (Riginos et al.
2014; Harvey et al. 2017), and their susceptibility to extinction
(Keller and Waller 2002). Differences among species in their
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genetic and phenotypic diversity are therefore of fundamental
interest. Comparative phylogeographic studies examining
spatial patterns of genetic diversity, however, have often
treated species-specific differences as noise in the quest to un-
earth the geological events that have broadly affected the his-
tories of biotas (Avise 1992; Bermingham and Moritz 1998).
As improved phylogeographic and population genetic es-
timates become available for more species, widespread obser-
vations of rampant discordance (e.g., Soltis et al. 2006; Smith
et al. 2014b) have renewed interest in evaluating whether dif-
ferences across species in patterns of genetic diversity are de-
terministic.
The ecological and life-history traits of organisms may

be important predictors of differences in patterns of genetic
diversity across species. Associations between standing ge-
netic diversity within species and organismal traits have
received attention because of interest in the adaptive and
evolutionary potential of levels of genetic polymorphism
and mutation rates (Nevo et al. 1984; Leffler et al. 2012;
Romiguier et al. 2014; Miraldo et al. 2016). Trait depen-
dence in the spatial patterning of diversity among pop-
ulations is also of interest, in part due to its potential
evolutionary importance—divergent populations repre-
sent potential incipient species. Although relatively few
studies are available, they have found that phylogeographic
or population genetic structure is predicted by growth form,
breeding system, floral morphology, pollination mecha-
nism, seed dispersal mode, phenology, life cycle, and suc-
cessional stage in woody plants (Loveless and Hamrick
1984; Duminil et al. 2007; Gianoli et al. 2016); microhabitat
association (branch circumference) and elevation in Costa
Rican orchids (Kisel et al. 2012); larval dispersal mode in
a variety of marine organisms (Palumbi 2003; Hellberg
2009); an association with forest canopy or understory in
Neotropical birds (Burney and Brumfield 2009); and body
size and reproductive mode in frogs (Pabijan et al. 2012;
Paz et al. 2015). More investigations into the association be-
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tween traits and genetic diversity are warranted (Papada-
poulou and Knowles 2016).

Measuring associations between organismal traits and
patterns of genetic diversity is useful in that it allows us to pre-
dict diversity from readily available trait information. If we
are able to determine the mechanisms responsible for these
correlations, however, they may provide insight into how or-
ganismal traits mediate important evolutionary processes like
adaptation and speciation. Assessing the mechanisms of trait
dependence in genetic variation requires measurement of
evolutionary processes, which can be challenging. For exam-
ple, traits such as r/K-selected ecological strategies that pre-
dict genetic diversity have been hypothesized to operate via
their effect on population stability through time (Romiguier
et al. 2014), but data on long-term population stability for
testing this mechanism are difficult to come by. Traits linked
to population divergence are often hypothesized to operate by
mediating dispersal patterns across space (e.g., Palumbi 2003;
Burney and Brumfield 2009), but few data on realized dis-
persal ormigration rates at large scales are available.Newdata
and methods, however, may facilitate improved investigation
of the processes thatmight act asmechanisms linking traits to
evolutionary patterns.

Genome-wide approaches to genetic sampling may pro-
vide more accurate estimates of genetic diversity and also
provide information on processes that are potential mecha-
nisms for differences in genetic diversity among species.
Methods for sequencing reduced representation libraries of
genomic DNA can be used to obtain information from
many independent parts of the genome and many samples
(e.g., Davey et al. 2011; Faircloth et al. 2012). Increasing
the number of loci under investigation provides more pre-
cise estimates of patterns and processes that are less subject
to biases resulting from coalescent stochasticity (Edwards
and Beerli 2000; Carling and Brumfield 2007). Sampling
hundreds of loci is equivalent to sampling an entire popula-
tion at a few loci, and with enough loci many parameters
can be reliably estimated even when populations are rep-
resented by only a single diploid individual (e.g., Willing
et al. 2012). Data sets with many independent loci may pro-
vide sufficient power to evaluate parameter-rich models of
population history that include such processes as migration
between populations, changes in population size, and selec-
tion in addition to divergence (Carstens et al. 2013). Finally,
processes like migration between populations and selection
may be evident only in subsets of the genome (Counterman
et al. 2004; Wall et al. 2009) and are best identified using
dense genomic sampling. Improved estimates of genetic di-
versity, population divergence, and other evolutionary pro-
cesses may improve our understanding of the evolutionary
effects of species traits.

The avifauna of the Amazon basin in northern South
America provides an excellent system in which to investi-
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gate the effect of traits on genomic diversity and popula-
tion history. The Amazonian avifauna is the most diverse
in the world (Pearson 1977) and comprises species with a
variety of ecological traits (Parker et al. 1996) and, based
on the few species with data, differing levels of genetic di-
versity (Bates 2000; Smith et al. 2014b). Many species are
habitat specialists (Rosenberg 1990; Kratter 1997; Alonso
et al. 2013), and closely related species (e.g., congeners) of-
ten partition space by associating with different habitats.
Two habitats in particular, floodplain forest (várzea and
igapó) and upland forest (terra firme), are widespread
and are inhabited by a suite of pairs of congeneric species
that segregate by habitat (Remsen and Parker 1983) and
sometimes exhibit interspecific aggression (Robinson and
Terborgh 1995). Floodplain forest, particularly várzea, has
an open, edge-like structure as a result of disturbance dur-
ing floods (Prance 1979; Wittmann et al. 2004), and many
floodplain species occur outside of floodplains in other edge
habitats, such as the borders of savanna or human-made
clearings. Upland forest, conversely, is typified by a high
proportion of tall trees, a dark interior, and open under-
story (Campbell et al. 1986; Gentry and Emmons 1987),
and many upland forest species avoid open areas.
The habitat associations of Amazonian birds may be im-

portant predictors of patterns of genetic diversity and pop-
ulation divergence across the landscape. Some evidence al-
ready exists for higher levels of population divergence in
upland forest species than floodplain and edge species,
based on a greater number of subspecies within species
inhabiting upland forest (Salisbury et al. 2012). In addition,
several mechanisms exist that may lead to elevated genetic
diversity and divergence in upland forest species. Upland
habitats are larger in area than floodplain habitats and have
been less subject to periodic flooding over geological time-
scales (Irion et al. 2009; Hess et al. 2015), which might lead
to larger and more stable populations and the maintenance
of genetic diversity. We therefore expect population genetic
diversity and estimates of population size to be higher and
population size change through time to be reduced in up-
land bird species. Upland habitats are subdivided by major
Amazonian rivers, whereas linear stretches of floodplain
habitats along rivers are largely continuous, such that mi-
gration might limit opportunities for population diver-
gence (Patton and da Silva 1998; Aleixo 2006).We therefore
expect higher population genetic structure and lower esti-
mates of gene flow in upland forest. In addition, the greater
stability through time of upland forest may produce greater
population divergence because populations have had more
time for isolation, in which case we expect deeper popu-
lation histories in upland species. Other possible mecha-
nisms exist, some of them detailed in “Discussion,” but those
listed here provide a useful set of hypotheses to evaluate with
genetic data.
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In this study, we examine 40 species or species complexes
(all of which are hereafter referred to as “species,” for brev-
ity) of broadly codistributed Amazonian birds that differ in
habitat association. The 40 species represent 20 pairs in
which one species is found in upland forest and the other
is a closely related species found in floodplains and edge
habitats. We use genomic sequence data from populations
distributed across the Amazon to estimate parameters that
reflect genetic diversity and population divergence as well
as effective population size, gene flow, and the depth of
population history in each species. We then compare these
variables between the floodplain/edge and upland forest
species. We discuss differences in patterns of genetic diver-
sity and divergence between the habitats and evaluate their
potential mechanisms and significance.
Methods

Sample Design

Wedesigned a sampling strategy tominimize the potential ef-
fects of sampling bias across species on comparisons of ge-
netic parameters. We first selected genera that contained a
pair of species or species complexes that have been found to
segregate between floodplains and upland forest using pub-
lished survey data on Amazonian birds (Remsen and Parker
1983; Terborgh 1985; Robinson and Terborgh 1995), compi-
lations of ecological trait information (Parker et al. 1996;
del Hoyo et al. 1992–2011; Schulenberg et al. 2010), expert
knowledge (B. M. Whitney and L. N. Naka, personal com-
munication), and personal observation. Although detailed
quantitative data on the ecological niches ofmost Amazonian
bird species are lacking, environmental data from where they
occur can provide a rough approximation for further assess-
ment of ecological differences. Tuanmu and Jetz (2015) found
that dissimilarity in the enhanced vegetation index (EVI) be-
tween adjacent pixels in MODIS satellite imagery effectively
distinguished edge habitats, such as along rivers, from closed
forest. Using the R packages maptools (Bivand and Lewan-
Koh 2017), raster (Hijmans 2016), rgdal (Bivand et al. 2017),
and spThin (Aiello-Lammens et al. 2014), we combined geo-
referenced specimen localities (see below) with records from
the eBird database (Sullivan et al. 2009; April 2017 version),
filtered out eBird records representing long survey periods
(6 h or more) or large spatial areas (5 km or farther), clipped
records to the Amazon basin (Mayorga et al. 2012), thinned
records occurring within 2 km of one another, and extracted
EVI dissimilarity values (Tuanmu and Jetz 2015). We com-
pared EVI dissimilarity between floodplain and upland spe-
cies in each genus.

Some of the genera selected have since been split into
multiple genera (Remsen et al. 2015), but the species pairs
examined are still closely related (1%–8% mitochondrial
This content downloaded from 141.2
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distance and 0.1%–0.5% average genetic distance across
nuclear loci; fig. 1). Species pairs are not necessarily sister
taxa. For each species, we examined all populations within
the Amazon basin. Some of our study species have popu-
lations outside the Amazon basin, generally in the Atlantic
Forest of southeastern South America or the humid forests
of Central America and the Chocó region of northwestern
South America, and we included samples from these areas
when available, but we focused comparative analyses on
Amazonian populations only.
We made lists of vouchered tissue samples from the Ama-

zon basin collected during our fieldwork and available from
existing natural history collections. From an initial set of
57 species pairs fitting our taxonomic and ecological criteria,
we removed any pair containing a species for which fewer
than 20 tissue samples were available. The result was a list
of 20 species pairs from 15 avian families (fig. 1). We selected
a set of samples for each species that would minimize differ-
ences in the spatial dispersion of samples across species. We
plotted a random set of 40 localities across the Amazon basin
using the genrandompoints function in Geospatial Model-
ling Environment software (ver. 0.7.1.0; Spatial Ecology,
Toronto, Canada).We then georeferenced all genetic samples
with locality information more precise than department or
state and sufficient precision to determine on which side
of any major biogeographic barriers (rivers or mountains)
the sample originated. Locality records were plotted using
ArcMap (ver. 10.0; ESRI, Redlands, CA) with the WGS84
projection. For each species, we selected samples that were
closest to each of the semirandom localities using the spatial
join function in ArcMap. The vagaries of sample distribution
sometimes resulted in the same sample being selected for
multiple localities or in a strong clustering of samples. We
thinned sampling to 20 localities by removing clustered sam-
ples on the basis of proximity to the nearest sample.
Laboratory Methods

We extracted whole genomic DNA from tissue samples using
DNeasy Blood and Tissue Kits (Qiagen, Valencia, CA) and
quantified extracts using a QuBit fluorometer (Thermo-
Fisher, Waltham, MA). We excluded samples with extracts
containing less than 1 mg of total DNA and thinned the re-
maining samples on the basis of proximity as described
above, to arrive at a final set of 11 samples for each species.
Due to the comparative nature of our study, it was im-

portant to obtain genetic data that would not bias estimates
of genetic parameters across species. Results are generally
not comparable across species if different loci are examined
because the process of orthology assessment among se-
quence reads leads to the recovery of subsets of loci that
are biased contingent on the amount of diversity in each
species (Harvey et al. 2015). Sequence capture of conserved
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Habitat Predicts Population Divergence 635
genomic regions permits the interrogation of the same loci
across divergent species (Bi et al. 2012; Faircloth et al.
2012; Hedtke et al. 2013), and orthology assessment in
the assembly of sequence capture data sets is straightfor-
ward and has relatively little effect on allelic diversity
(Harvey et al. 2016). Despite the conservation of the loci
targeted with sequence capture, the flanking regions con-
tain high levels of variation sufficient to obtain many thou-
sands of variable sites, a sufficient number to estimate pop-
ulation genetic parameters with high precision (Smith et al.
2014a).

We used sequence capture to target ultraconserved
elements (UCEs) and exons from across the genome. We
modified existing sequence capture probe sets for UCEs
(Faircloth et al. 2012) to obtain additional sequence from
the more variable UCE flanking regions that might be use-
ful for inferring shallow population histories. The modified
probe set is described in Zucker et al. (2016). In brief, in
UCE loci targeted with a single probe, we designed two
probes extending 30 bp farther into the UCE flanks in each
direction. We also targeted conserved exons adjoining var-
iable introns that have been used in previous avian phylo-
genetic studies (Kimball et al. 2009; Smith et al. 2012; Wang
et al. 2012). Probe sequences were based on the chicken
(Gallus gallus) genome release ICGSC Gallus_gallus-4.0
(Hillier et al. 2004). The final probe set included 4,715
probes targeting 2,321 UCEs and 96 exons.

We sent all samples (n p 454) to Rapid Genomics
(Gainesville, FL) for sequence capture and sequencing fol-
lowing the general protocol described in Faircloth et al.
(2012) and Smith et al. (2014a). Samples were multiplexed
at 160 samples per lane on a 100-bp paired-end HiSeq
2500 run (Illumina, San Diego, CA). Rapid Genomics de-
multiplexed raw reads using custom scripts and strict bar-
code matching.
Bioinformatics

We cleaned reads with Illumiprocessor software (Faircloth
2013). We processed and assembled data sets following
Zucker et al. (2016) using the seqcap_pop pipeline (https://
github.com/mgharvey/seqcap_pop). In brief, we used Velvet
(Zerbino and Birney 2008) and the wrapper programVelvet-
Optimiser (Gladman 2009) to assemble reads across all indi-
viduals into contigs de novo. We mapped contigs to UCE
probe sequences using PHYLUCE (Faircloth 2015) and then
mapped cleaned reads to on-target contigs using BWA (Li
and Durbin 2009), allowing four mismatches per read. We
used samtools (Li et al. 2009) and PICARD (Broad Institute,
Cambridge, MA) to process BAM files, soft-clip pileups out-
side the reference, and add read groups for each individual.
We realigned reads and indels tominimizemismatched bases
and then called single-nucleotide polymorphisms (SNPs) and
This content downloaded from 141.2
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indels in the Genome Analysis Toolkit (GATK; McKenna
et al. 2010).We used the GATK tomask indels, remove SNPs
with a quality score below Q30, and phase SNP alleles on
the basis of their presence on the same reads and mate pairs.
We used add_phased_snps_to_seqs_filter.py from seqcap_
pop to insert SNPs into reference sequences and produce
alignments for each locus across individuals. We collated se-
quences and produced final alignments usingMAFFT (Katoh
et al. 2005).
We also assembled partial mitochondrial genomes for

each sample from off-target reads using a similar pipeline.
We obtained existing complete or nearly complete mito-
chondrial genome sequences from the most closely related
taxon to each study species for which they were available
(table S1; tables S1–S21 are available online). We mapped
reads to the mitochondrial genomes and sorted and in-
dexed the BAM file using samtools. We then called vari-
ant sites and output VCF files containing variant and in-
variant bases using FreeBayes (Garrison and Marth 2012)
and used these to assemble sequences using freebayes_vcf2fa
_mt.py (https://github.com/mgharvey/misc_python). Only sites
with a read depth offive or greaterwere included in sequences.
We conducted final alignment with MAFFT.
We searched for potential sample identification errors or

signs of contamination by building exploratory trees of con-
catenated SNPs from the UCE/exon data using MrBayes
(ver. 3.2.2; Ronquist et al. 2012) and scrutinizing any long
branches and by mapping mitochondrial sequences to ex-
isting sequence data in GenBank (Benson et al. 2014) using
Blastn (Altschul et al. 1997). We counted the reads in BWA
assemblies using samtools.
Summary Statistics

Wecalculated basic population genetic summary statistics for
each species using DendroPy (ver. 3.10.0; Sukumaran and
Holder 2010). These included the raw number of variable
sites; nucleotide diversity (p; Tajima 1983), ametric of genetic
diversity across all individuals in each species; the mutation-
scaled effective population size, or Watterson’s v (Watterson
1975), across all individuals; and Tajima’sD (Tajima 1989), a
ratio of genetic diversity statistics that can reveal signals of
population expansions or selection. We also calculated the
average observed heterozygosity within each individual of
every species as a measure of the standing genetic diversity
within populations. Genetic diversity may differ among ge-
nomic regions, including between sex-linked chromosomes
and autosomes, and this can reveal the action of varied pro-
cesses, such as differences in effective population size between
sexes (Counterman et al. 2004). We determined the genomic
location of each locus by mapping it to the Zebra Finch (Tae-
niopygia guttata) genome (Warren et al. 2010).We then com-
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pared levels of nucleotide diversity on loci mapping to the
Z chromosome to those mapping to the autosomes.
Phylogenetic Analyses

We estimated gene trees for each nuclear locus in every spe-
cies using RAxML (ver. 8; Stamatakis 2014). We also esti-
mated a phylogeny for the mitochondrial genome in each
species using BEAST2 (Bouckaert et al. 2014). Benefits of
mitochondrial DNA include its relatively clocklike evolu-
tionary rate and the availability of detailed information on
substitution rates from many groups, which permit dating
haplotype divergences with some degree of accuracy. We
estimated time-calibrated trees using substitution rates on
the basis of the formula of Nabholz et al. (2016), which ac-
counts for rate differences associated with differences in
avian body mass. We obtained the average body mass of
each study species fromDunning et al. (2008). We integrated
across possible models of nucleotide substitution on the basis
of their probabilities using bModelTest (ver. 0.1.3; Bouckaert
and Drummond 2017). We used the total tree depth of nu-
clear gene trees and the mitochondrial tree as estimates of
the overall age of extant populations in each species.
Population Genetic Structure

We examined multiple strategies for estimating population
divergence. We first estimated simple summaries of overall
population genetic structure in each species using dXY and
FST. We estimated pairwise sequence divergence (dXY) be-
tween both haplotypes in each pair of individuals correcting
for multiple substitutions using the method of Jukes and
Cantor (1969); dXY was estimated separately for each locus.
We estimated FST between all pairs of individuals in each
species using the statistic developed by Reich et al. (2009),
which has been shown to be unbiased and effective even
when dealing with sample sizes as small as two alleles per
population (Willing et al. 2012). For each species, we exam-
ined mean values of FST and dXY across all individuals.

We next examined methods to infer population cluster-
ing across individuals and assign individuals to popula-
tions. Various methods are available to infer population
structure, and they can produce different results (Latch
et al. 2006; Chen et al. 2007). We therefore examined re-
sults from three alternative methods: STRUCTURE (Prit-
chard et al. 2000), Bayesian analysis of population structure
(BAPS; Corander et al. 2003), and discriminant analysis of
principal components (DAPC; Jombart et al. 2010). We also
used the first two methods to determine whether any of the
individuals sampled were assigned with high probabilities to
multiple populations, suggestive of admixture between pop-
ulations. STRUCTURE is a model-based clustering method
that simultaneously infers population structure and assesses
This content downloaded from 141.2
All use subject to University of Chicago Press Term
the probability of individual assignment to a cluster or com-
bination of clusters. We ran STRUCTURE using the linkage
model and provided phase information for each site in each
individual as well as distances in base pairs between linked
sites. Sites mapping to different loci were treated as unlinked.
We conducted analyses at k values ranging from 1 to 6, with
10 replicate runs at each value. Each run included a 50,000-
iteration burn-in followed by 200,000 sampling iterations,
and we assessed convergence by examining a, F, Dij, and
the likelihood within and across runs at each k value. We es-
timated the best value of k using the method of Evanno et al.
(2005) implemented in STRUCTURE HARVESTER (Earl
2012). In some cases, the results at the best k value included
clusters to which no individuals were assigned. In these sit-
uations, we used the largest k value in which at least one in-
dividual was assigned to each cluster (Gao et al. 2007). We
also explored longer runs of 1,000,000 iterations (following
100,000 burn-in iterations) in two species to ensure that run
lengths were sufficient for accurate inference of k. We com-
bined results across replicates runs with the best k value us-
ing CLUMPP (Jakobsson and Rosenberg 2007).
BAPS is a model-based clustering method that jointly

infers the number of populations and population assign-
ment of individuals, which can then be used in a subsequent
analysis of admixture for each individual. Because BAPS re-
quires complete phasing information for linked sites and
phasing had failed for some individuals at most linked sites
in our data sets, we used the unlinked model and examined
only a single randomly selected SNP from each locus for this
analysis. We conducted mixture clustering with the maxi-
mum number of populations (k) set at 10. We estimated ad-
mixture in each individual on the basis of mixture clustering
using 50 simulation iterations, 50 reference individuals, and
10 iterations to estimate admixture coefficients in the refer-
ence individuals.
DAPC is a fast, nonparametric method for inferring the

number of genetic clusters and cluster assignments in large
data sets. We inferred the number of clusters and cluster
membership in DAPC using themaximumnumber of prin-
cipal components available for each species and selected the
best value for cluster number by choosing the value at which
theBayesian informationcriterionreacheda lowpoint (Jom-
bart et al. 2010).Unlike STRUCTUREandBAPS,DAPCdoes
not allow for admixture estimation.
Demographic Modeling

We estimated demographic parameters using a coalescent
modeling approach in G-PhoCS (ver. 1.2.3; Gronau et al.
2011). We ran analyses using all population assignments
inferred in STRUCTURE, BAPS, and DAPC to determine
population membership. Admixed individuals were placed
in the population with the highest assignment probability.
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We specified the population topologies in situations where
more than two populations were present using theMrBayes
trees of concatenated SNPs. For each species, we examined
both a model with no migration between populations sub-
sequent to divergence as well as a model allowing for migra-
tion between terminal populations. We used gamma priors
of (1, 5,000) for v and t and (1, 3) for migration and ran
analyses for a minimum of 500,000 iterations (sampling ev-
ery 100). We also explored the effect of v and t priors of
(1, 50). Convergence was assessed by examining parameter
traces and effective sample size values in Tracer (ver. 1.5;
Rambaut and Drummond 2007). G-PhoCS implements a
multipopulation model and cannot be run in the study spe-
cies with a single population. For comparative analyses, we
used the species-wide v values from DendroPy and di-
vergence time (t) values of zero for single-population spe-
cies.
Comparative Analyses

The analyses described above produced 19 genetic param-
eters that can be broadly categorized as estimates of data
set attributes, genetic diversity, population divergence, pop-
ulation size and stability, rates of gene flow across the land-
scape, and time in the landscape (table 1). These categories
are somewhat contrived because individual parameters may
reflect both pattern and process or multiple different pro-
cesses, an issue we return to in “Discussion.”We also expect
many genetic parameters to exhibit correlations with each
other. We estimated Spearman’s correlations between all
pairs of variables and significance using the R package Hmisc
(Harrell 2016) and grouped highly correlated variables using
the ClustOfVar R package, following the developer recom-
mendations (Chavent et al. 2012). Another strategy to ac-
count for correlations among variables is to reduce multiple
variables to linearly correlated axes using a principal compo-
nent analysis (PCA). We conducted PCAs on all 16 variables
(excluding those considered data attributes) as well as on the
subset of variables within each category provided in table 1.
Although PC axes may be difficult to interpret biologically,
they provide an index of the effect of correlations among var-
iables on our results.

Before testing associations between genetic parameters
and traits, we tested whether each parameter was associated
with the evolutionary relatedness of study species. We esti-
mated a phylogeny for all 40 study species by aligning UCE
and exon sequences from one sample of each species in
MAFFT. We concatenated alignment columns that con-
tained all 40 individuals and conducted a Bayesian phyloge-
netic analysis on the completematrix inMrBayes to obtain a
phylogenetic tree.We square-root transformed right-skewed
genetic variables to achieve normality and calculated phylo-
genetic signal in each variable using Pagel’s l in the R pack-
This content downloaded from 141.2
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age Phytools (Revell 2011), with 999 permutations to assess
whether l differed significantly from zero. We also tested
whether the degree to which each variable differed between
members of a species pair was predicted by the overall level
of pairwise sequence divergence (dXY) between them at ge-
nomic loci. Because some of the study species represented
species complexes (see “Sample Design” above), we tested
whether species complexes differed in genetic parameters
from the other species.
We tested whether habitat predicted population genetic

parameters using two strategies to account for shared evo-
lutionary history. We first used generalized linear mixed
models (GLMMs) to test for correlations, including genus
as a random variable to account for the shared history be-
tween study species pairs. This test serves as a nonparametric
paired test of the difference in genetic parameters between
floodplain and upland species. The generalized linear model-
ing approach allowed us to examine response variables with
diverse error distributions in the same statistical framework.
Gaussian error models were used for continuous and large
count data, Poisson models for data composed of low count
values (!100), and gamma models with a logarithmic link
function for continuous data with positive skew. We exam-
ined the relationship between habitat and each genetic re-
sponse variable in one-way tests using functions for GLMMs
in the stats R package (R Core Team 2015). Covariance due
to shared history can also be modeled using phylogenetic
distance. We square-root transformed right-skewed data to
achieve normality and used phylogenetic generalized least
squares (PGLS) in the R package caper (Orme et al. 2013)
to test for associations between habitat and genetic param-
eters while controlling for relatedness among species with
the MrBayes phylogeny of concatenated data. We accounted
formultiple comparisons by conducting a permutation test to
evaluate the probability of recovering the observed number of
associations between habitat and genetic parameters with
randomly permuted values for response variables. All analy-
ses were run on the first three PC axes from each PCA as well
as on each of the individual genetic parameters presented in
table 1.
Although our primary focus was on the associations be-

tween habitat and genetic parameters, we also examined
two additional traits previously found to predict popula-
tion divergence in Neotropical birds. First, whether a bird
inhabits the forest canopy or understory has been shown
to predict levels of divergence across landscape barriers
(Burney and Brumfield 2009; Smith et al. 2014b), so we
tested whether canopy and understory species (based on
Parker et al. 1996) differed in metrics of population ge-
nomic diversity. Second, habitat or microhabitat associa-
tions may affect population genetic divergence via differ-
ences in dispersal ability among species (Burney and
Brumfield 2009). We examined whether Kipp’s index, a
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morphological index of dispersal ability that can be mea-
sured from museum specimens (Kipp 1959), predicted lev-
els of population genomic diversity across species. Our study
design was such that species differing in forest stratum and
Kipp’s index were not organized into pairs; instead, both
members of a pair typically occurred in the same forest stra-
tum and had similar Kipp’s index values.We were therefore
unable to leverage GLMMs with a random variable to con-
trol for covariation across species. Instead, we used PGLS to
test for correlations with genetic variables using phylogeny
to control for evolutionary relatedness. Finally, we tested
whether associations between habitat and genetic parame-
ters involved second-order interactions with forest stratum
and/or Kipp’s index using multipredictor GLMM and PGLS
models.
Results

We found higher dissimilarity in the EVI in localities where
the floodplain species occurred (table S2), consistent with
an associationwith edge-like habitats. Fifteen of the 20 com-
parisons were significant, but all pairs exhibited a highermean
value of vegetation dissimilarity in the floodplain species.
This content downloaded from 141.2
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Illumina sequencing produced an average of 2,087,266
(SD, 656,446) raw reads per sample. Raw reads are depos-
ited in the National Center for Biotechnology Information
Sequence Read Archive (PRJNA389814). On average, 28.1%
(SD, 6.57%) of sequence reads in each species were success-
fully mapped to target loci after cleaning, and 0.44% (SD,
0.60%) of all reads mapped to the mitochondrion. We ob-
tained data from an average of 2,142 UCEs (SD, 65.5) and
69 exons (SD, 4.8) in each species. We recovered data in at
least one species from 2,416 of 2,417 targeted loci. Mean lo-
cus length in each species averaged 554 bp (SD, 56.3), and
they contained an average of 7,196 variable sites (SD, 1,379)
across all loci. Additional summary statistics are provided
in tables S3 and S4.
On the basis of MrBayes trees of concatenated SNPs and

Blastn results of mitochondrial sequences, we determined
that eight samples were likely misidentified or heavily con-
taminated and removed these from further analyses (ta-
ble S5). The correct identifications of these individuals,
based on BLAST results of mitochondrial fragments, were
generally species that are superficially similar in phenotype.
Three samples contained large numbers of rare alleles likely
resulting from lower levels of contamination or sequencing
Table 1: Relationships between habitat association and genetic parameters
Genetic parameter
 Group
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Data attributes:

Mapped reads
 1
 .25
 .80
 1.32
 .20

Assembled sequence length
 2
 2.77
 .45
 2.98
 .33

No. variable sites
 3
 3.47
 .001
 4.92
 !.001
Genetic diversity:

Nucleotide diversity (p)
 2
 2.08
 .04
 3.29
 .002

Observed heterozygosity
 2
 2.02
 .98
 2.43
 .67

Z∶A chromosome nucleotide diversity (p)
 5
 .34
 .74
 1.08
 .29
Population divergence:

Mean dXY between populations
 2
 2.10
 .04
 3.30
 .002

No. STRUCTURE populations
 4
 1.22
 .22
 2.80
 .008

No. BAPS populations
 4
 .62
 .54
 1.64
 .11

No. DAPC populations
 4
 1.28
 .20
 2.88
 .007
Population size and stability:

Watterson’s v
 3
 3.36
 .002
 4.81
 !.001

Tajima’s D
 3
 22.03
 .05
 22.31
 .03

Average v across populations (G-PhoCS)
 6
 .10
 .92
 2.15
 .88

Change in v through time (G-PhoCS)
 6
 20.23
 .82
 2.07
 .94
Gene flow:

Mean FST between populations
 4
 2.19
 .03
 2.89
 .006

Average migration rate (G-PhoCS)
 7
 .08
 .94
 2.48
 .64
Time in the landscape:

Average gene tree height
 2
 2.39
 .02
 3.59
 !.001

Crown age of mitochondrial haplotypes
 8
 .82
 .42
 1.54
 .14

Oldest population divergence or t (G-PhoCS)
 4
 .03
 .98
 1.59
 .12
Note: Group numbers indicate assignment to clusters of semi-independent variables based on ClustOfVar. Results are from
single-predictor tests. BAPS p Bayesian analysis of population structure; DAPC p discriminant analysis of principal compo-
nents; GLMM p generalized linear mixed model; PGLS p phylogenetic generalized least squares.
u/t-and-c).
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errors and were also removed (table S6). Removing these
samples resulted in concatenated SNP trees with low tomod-
erate structure based on internal branch lengths (fig. S1;
figs. S1–S6 are available online). Three samples failed, with
greater than 85% missing data at variable sites, and were re-
moved (table S7). After removing these 14 samples, we were
left with 440 samples (plus 24 extra-Amazonian samples)
across the 40 study species.

We summarized population genetic summary statistics
by obtaining mean values across all loci within a species
and present here the averages of those mean values across
the 40 study species. Mean nucleotide diversity (p) aver-
aged 1:09# 1023 (SD, 2:98# 1024) across study species,
mean Watterson’s v averaged 0.79 (SD, 0.22), and Tajima’s
D averaged 20.79 (SD, 0.36). Mean gene tree depths aver-
aged 3:93# 1023 substitutions per site (SD, 7:67# 1024),
and the crown ages of mitochondrial haplotypes averaged
4.06 million years ago (SD, 2.34; fig. S2). Across study spe-
cies, contigs from 2,415 of 2,416 recovered loci successfully
mapped to the Zebra Finch genome assembly. Contigs from
all species mapped to the Z chromosome for 171 loci, to
one of the autosomes for 2,169 loci, and to unplaced
scaffolds for 44 loci. For 31 loci, contigs from different spe-
cies mapped to different chromosomes or scaffolds, result-
ing in ambiguous positions. Based only on loci mapping to
the Z chromosome or autosomes in all study species, the
ratio of nucleotide diversity on the Z chromosome to that
on the autosomes averaged 1.04 (SD, 0.263).

FST across loci averaged 0.26 (SD, 0.14), and mean per-
locus dXY averaged 1:11# 1023 (SD, 3:10# 1024). The
number of populations and population assignments in-
ferred from STRUCTURE, BAPS, and DAPC were broadly
concordant (figs. 2, S3). The best k value from STRUCTURE
analyses based on the Evanno method, after reducing k to
remove clusters without assigned individuals, ranged be-
tween one and four across study species (median, three).
Longer STRUCTURE runs for a subset of two species did
not result in different k estimates than the shorter runs used
in all species (table S8). The number of populations estimated
in BAPS varied from one to three (median, two), and the
number of clusters fromDAPC varied between one and four
(median, two). Many individuals contained mixed probabil-
ities of assignment to different clusters in the STRUCTURE
results, potentially indicative of admixture, but no admix-
turewasrecovered intheadmixtureanalysis fromBAPS.Pop-
ulations from all three methods were generally partitioned
among geographic areas, with boundaries broadly concor-
dant with major rivers (fig. S4).

Because no appropriate calibrations are available, we ex-
amined raw parameter values from G-PhoCS and do not
present units. Estimates of historical demography from G-
PhoCS for the 23 species with multiple populations (fig. 2;
table S9) revealed that mean v across populations within
This content downloaded from 141.2
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each species averaged 1:53# 1023 (SD, 5:73# 1024) across
species. In contemporary populations, v values were on av-
erage 2.68 times larger than the v inferred for the ancestral
population at the root (SD, 1.29). The height of the deepest
divergence in the model (t) varied from 9:72# 1025 to
1:13# 1023 across species (mean, 4:45# 1024). The aver-
agemigration rate between populations within a species var-
ied from 0.337 to 4.69 (mean, 0.950). G-PhoCS results were
similar in analyses run with different population conforma-
tions, so we focused on results from the models using as-
signments from BAPS.
Genetic parameters compiled for each species from the

above analyses and representing data set attributes, genetic
diversity, divergence, and demographic history are listed
in table 1, and values are presented in table S10. Each ge-
netic parameter was correlated (P ! :05) with between 1
and 13 others (fig. S5), and we clustered the variables into
eight groups containing high within-group correlations.
Ten of 19 genetic parameters exhibited phylogenetic signal
based on Pagel’s l tests (table S11). The level of overall di-
vergence between the species in a pair, however, was not
associated with the degree to which they differed in any ge-
netic variable (table S11). Two parameters, number of
mapped reads and number of STRUCTURE populations,
were correlated with whether a species represented a single
species or species complex (table S11).
Habitat association predicted (P ! :05) seven genetic

parameters from three semi-independent groups in single-
comparison GLMM analyses (fig. 3; table 1). The number of
significant comparisons is greater than expected by chance,
accounting for multiple comparisons (P p :001). Three
measures of species-wide genetic diversity, the number of
variable sites, nucleotide diversity (p), and the mutation-
scaled effective population size (v) were higher in upland for-
est species than in floodplain species. Tajima’sDwas slightly
lower in upland forest species than in floodplain species, al-
though this was partly driven by one outlier (without Col-
lared Trogon [Trogon collaris] GLMM: t p22:02, P p
:051). Population divergence across the landscape,measured
by both dXY and FST, was higher in upland forest species.
Correlations between habitat and dXY or FST changed little
when corrected for small differences among species in the
geographic distances between samples (table S12). Finally,
the average height of gene trees was greater in upland forest
species. PGLS results were similar to those from GLMMs,
with greater nucleotide diversity, higher v, lower Tajima’s
D, greater gene tree height, and larger dXY and FST values in
upland than in floodplain species (table 1). In addition, the
number of populations inferred using both STRUCTURE
and DAPC was greater in upland forest species on the basis
of PGLS. The number of significant comparisons was greater
than that expected by chance across the same number of
comparisons on the basis of a permutation test (P p :002).
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Figure 2: Representative pair of study species depicting (a) sample distribution and the distribution of populations inferred with Bayesian
analysis of population structure (BAPS); (b) individual population assignments based on STRUCTURE analysis, BAPS, and discriminant
analysis of principal components (DAPC); and (c) demographic models inferred on the basis of the population assignments from BAPS.
The individuals are in columns in the population assignment plots. The demographic models depict population history through time, with
the width of boxes proportional to their mutation-scaled effective population size (v), their depth proportional to relative population diver-
gence times (t), and the size of arrows between them indicating the level of migration between terminal populations. Bird images courtesy del
Hoyo et al. (2017).
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Across response variables, four to seven species pairs showed
a difference in the direction opposing the majority of pairs
(table S13), with the floodplain species inmost of these cases
displaying greater diversity or more divergence than the up-
land forest species.

Relationships between habitat and genetic parameters
were similar to those described above in multipredictor
models, including forest stratum and/or Kipp’s index as well
as habitat (tables S14–S20). Analyses using PC axes instead
of individual parameters recovered significant associations
with habitat (table S21). PC1 from all 16 parameters (exclud-
ing only those that reflect data attributes; see table 1) was
associated with habitat in a GLMM (t p 22:44, P p :02).
Within each parameter category representing data attri-
butes, genetic diversity, population divergence, and popula-
tion size and stability, one or two of the first three PC axes
was generally correlated with habitat. None of the PC axes
reflecting time in the landscape were strongly correlatedwith
habitat, although PC1 was nearly significant (P p :05).

PGLS analyses with forest stratum or Kipp’s index did
not detect strong associations with parameters of popula-
tion genetic diversity or population history. The only signif-
icant relationship was a positive correlation between forest
stratum and the relative nucleotide diversity on the Z chro-
mosome versus autosomes (t p 2:60, P p :01; fig. S6).
Results of forest stratum andKipp’s index comparisons were
similar between single- and multipredictor PGLS analyses
(tables S14–S20).
Discussion

We found that the habitat associations of Amazonian birds
predict genome-wide estimates of parameters related to ge-
This content downloaded from 141.2
All use subject to University of Chicago Press Term
netic diversity and divergence across the landscape. These
results provide further confirmation of the hypothesis that
the ecological traits of species can be used to predict levels
and patterns of genetic diversity (Loveless and Hamrick
1984; Nevo et al. 1984; Duminil et al. 2007; Burney and
Brumfield 2009; Kisel et al. 2012; Leffler et al. 2012; Pabijan
et al. 2012; Romiguier et al. 2014; Paz et al. 2015). This is
important because it suggests that broad ecological infor-
mation about species can be used as proxies for diversity.
We also found evidence that habitat was associated with
parameters such as effective population size and size change,
gene flow, and the age of populations, reflecting possible
mechanisms responsible for differences in patterns of genetic
variation across species. These results highlight the potential
of population genomic data to elucidate the mechanisms
whereby species ecologies mediate evolutionary processes re-
lated to adaptation and speciation.
Six of 16 genetic parameters associated with genetic

patterns and processes were associated with habitat in the
GLMMs, as were 8 of 16 in the PGLS analyses, greater than
what would be expected by chance in permutation tests.
Most parameters differing between upland and floodplain
species were summary statistics reflecting patterns of vari-
ation across all loci. Model-based estimates of population
genetic structure and demographic parameters showed
fewer associations. The low variance in the number of
groups from analyses of population genetic structure may
contribute to low power to detect differences in those
parameters. Higher-level demographic parameters, such
as divergence time and migration rate, are notoriously dif-
ficult to estimate accurately (Myers et al. 2008; Strasburg
and Rieseberg 2010; Schraiber and Akey 2015), and
estimates can be spurious when genetic variation is affected
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by unmodeled processes, such as natural selection (Hahn
2008). Purifying selection in the conserved loci examined
here may reduce the accuracy of parameter estimates, in-
cluding those estimated under the multispecies coalescent
model in G-PhoCS. Because we used the same conserved
markers in each study species, we do not expect purifying
selection to result in a bias across species in demographic
estimates, but it may reduce our ability to detect patterns
in these parameters. However, recent evidence suggests that
UCEs provide a better fit to some evolutionary models that
assume neutrality than coding loci (Reddy et al. 2017) and
that UCEs perform reasonably under the multispecies coa-
lescent, particularly with the addition of more sequence
from variable flanking regions (Meiklejohn et al. 2016).
Our ability to detect genetic differences between floodplain
and upland forest species will surely improve with more
complete data sets and better models, but our current data
and methods are at least sufficient to identify habitat asso-
ciations in a modest range of genetic parameters.

We found differences between floodplain and upland
forest species in some processes that might allow recon-
struction of the mechanisms responsible for differences in
diversity between the habitats. Greater dispersal over eco-
logical timescales in floodplain species could explain their
lower levels of diversity and divergence with respect to up-
land forest species. Birds of the forest interior are less likely
to cross openings than birds of forest edges (Laurance et al.
2004). Seasonal movements are more frequent in birds of
edge habitats (Levey and Stiles 1992), and seasonal flooding
may annually force some floodplain birds into upland for-
est, promoting the movement of individuals into new areas
(Rosenberg 1990). Rivers—important barriers to dispersal
in Amazonia—could be less effective dispersal barriers to
floodplain species than to upland species (Capparella 1987;
Patton and da Silva 1998; Hayes and Sewlal 2004). Uplands
may not occur within several kilometers of the main chan-
nel (Hess et al. 2015), potentially augmenting the signifi-
cance of river barriers for upland bird species. River capture
events, in which shifts in river courses result in land mov-
ing from one bank to the other, may regularly result in
the passive movement of patches of floodplain habitat (Salo
et al. 1986; Dumont 1991) and associated organisms (Tuo-
misto and Ruokolainen 1997; Patton et al. 2000) across river
barriers, but river capture events involving upland forest
may be less frequent (but see Almeida-Filho and Miranda
2007). We did find that floodplain forest species had lower
FST values than upland forest species, consistent with higher
rates of migration under an island model. However, we did
not find higher migration rates in floodplain species than in
upland forest species in our demographic models (table S9).
Genomic data sets including information on linkage and
improved population genetic methods for estimating migra-
tion may be required to detect concerted differences in pat-
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terns of gene flow in these habitats that are associated with
the differences in genetic divergence.However, theFST results
provide some evidence that ecological mechanisms are re-
sponsible for differences in population divergence between
habitats.
Differences in population size, population fluctuations

through time, or the time a species has been present in
the landscape could also explain differences in diversity
and divergence between habitats. Floodplains are currently
relatively restricted in the Amazon basin, where they cover
about 14% of the lowland area (Hess et al. 2015). The small
area in floodplains may constrain population sizes in flood-
plain species, leading to lower genetic diversity and fewer
opportunities for population divergence. Consistent with
this hypothesis, we found lower values of Watterson’s v,
which scales with effective population size, in floodplain spe-
cies. However, this estimate includes all individuals across
populations in each species and thus could reflect divergence
between populations as well as within them. Estimates of
within-population v did not show similar differences be-
tween habitats. Sea level rise associatedwith climatic changes
may have reduced the extent of available terrestrial flood-
plain habitats during the Quaternary period (Latrubesse
and Franzinelli 2002; Irion et al. 2009), and recent expansion
following these or other events could also help explain lower
genetic diversity in floodplain species (Matocq et al. 2000;
Aleixo 2002, 2006). Low Tajima’s D values are expected
under recent population expansion, but Tajima’s D values
were, if anything, higher in floodplain than in upland forest
species. There was no difference between floodplains and
uplands in the change in population size between the root
population and extant populations in G-PhoCS. We note,
however, that signals of expansion may be difficult to detect
in conserved loci because purifying selection results in a sim-
ilar excess of rare alleles to expansion (Hahn et al. 2002).
Overall, our evidence for larger or more stable populations
in floodplain species is weak, but linkage information com-
binedwith bettermethods of tracking population size changes
through time may provide more information.
Population divergence could also be affected by the sta-

bility of habitats over geological time and the time that they
have been occupied by the species of interest. Recent colo-
nization or expansion across a habitat might lead to low di-
vergence in floodplain species. Consistent with this hypoth-
esis, we found that the average gene tree height of floodplain
species was shallower than that in upland species. We did
not see similar differences in age on the basis of mitochon-
drial crown ages or the age of the deepest population diver-
gence from G-PhoCS. However, this result does provide
some confirmation of prior evidence that the greater diver-
gence in upland species may be attributable to historical
factors, such as the age and stability of populations in that
habitat (Smith et al. 2014b).
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The evidence described above implicates a combination of
ecological and historical mechanisms in differences in diver-
sity and divergence between floodplain and upland birds, but
detailed characterization of the mechanisms is still challeng-
ing. In addition to the shortcomings listed above for individ-
ual parameters, we are limited by issues of identifiability.
Many processes affect population genetic variation similarly,
making them difficult to distinguish (Myers et al. 2008;
Strasburg and Rieseberg 2010). We expect that improve-
ments will come from larger genomic data sets that include
linkage information, but we also expect them to come from
improved methods that can incorporate diverse processes
in a single modeling framework. In addition, nongenomic
data may also be needed to address some processes. Develop-
ments in animal tracking now permit estimation of dispersal
at large spatial and temporal scales (Kays et al. 2015), and
large-scale mating assays and observational studies can per-
mit estimation of selection and fitness across a broad area
(e.g., Yoder et al. 2014). These estimates could validate or
even supplant estimates of these processes from population
genomic data. In addition, although substantial progress
has been made in understanding the geological history of
the Amazon basin (Hoorn and Wesselingh 2011), matching
genetic inferences with landscape events is still a challenge
(Harvey and Brumfield 2015). This could be addressed with
more precise estimates of landscape history combined with
better strategies for assigning absolute times to events esti-
mated from genomic data. Although we were able to date
events inferred in the mitochondrial tree, improved substitu-
tion models and rate parameters need to be developed for
UCEs and conserved exons—or perhaps for a subset of
them that exhibit clocklike evolution. Finally, the compar-
ative methods used in our study (GLMM and PGLS) are
useful, but comparative analyses that allow simultaneous
estimation of differences in multiple response variables that
covary according to an explicit population genetic or evolu-
tionary model are desirable.

As a result of our focus on comparative analyses, we have
barely probed the details of population genetic patterns
within individual species (but see figs. S14–S20). Upland
forest species, on average, exhibited greater genomic diver-
sity, deeper history, and greater divergence than floodplain
species in all significant comparisons. The deep genetic
divergences observed in many upland forest species coin-
cided roughly with rivers that represent major putative bio-
geographic barriers for terrestrial Amazonian species
(Cracraft 1985; da Silva et al. 2005). Higher-resolution stud-
ies are warranted within particular upland forest species to
better characterize intraspecific diversity and determine
whether populations merit recognition as full species. In
particular, Variegated Tinamou (Crypturellus variegatus),
Rufous-capped Antthrush (Formicarius colma), Spot-backed
Antbird (Hylophylax naevius), Sooty Antbird (Hafferia for-
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tis), Black-faced Antbird (Myrmoborus myotherinus), and
Straight-billed Hermit (Phaethornis bourcieri) contained
deep divergences within currently recognized species. Stud-
ies of some of these species have recently been completed
(e.g., Fernandes et al. 2014; Araújo-Silva et al. 2017) or
are under way.
However, some species pairs in all comparisons contained

higher diversity or divergence in the floodplain species. Gen-
era with consistently higher diversity or divergence in the
floodplain species included Piaya, Formicarius, Synallaxis,
and Saltator. InPiaya, there was no notable divergencewithin
the upland forest species (Black-bellied Cuckoo [P. melano-
gaster]) and weak divergence in the floodplain forest species
(Squirrel Cuckoo [P. cayana]). In the last three cases, how-
ever, a single deep divergence was present in the floodplain
forest species. In Black-faced Antthrush (Formicarius analis)
and Grayish Saltator (Saltator coerulescens), a highly diver-
gent population was present in the Guianan region, whereas
in Plain-crowned Spinetail (Synallaxis gujanensis) it was in
the southwestern Amazon near the foot of the Andes. These
species pairs demonstrate that the trend for greater diversity
and divergence in upland species is not universal and sup-
port the idea that historical contingency and idiosyncrasy
play an important role in determining patterns of intra-
specific diversity across Neotropical bird species (Brumfield
2012).
Despite prior evidence that divergence in Neotropical

birds is associated with forest stratum or dispersal ability
(Burney and Brumfield 2009; Smith et al. 2014b), we de-
tected little evidence for relationships between these traits
and genomic diversity. The only relationship recovered
between genetic parameters and forest stratum or Kipp’s
index involved higher nucleotide diversity on the Z chro-
mosome relative to autosomes in understory species, a
pattern driven largely by the two tinamous. This is surely
due in part to low power resulting from our study design.
Members of a genus in our study always occurred in the
same forest stratum and exhibited similar Kipp’s index
values, and therefore the number of phylogenetically inde-
pendent data points with a particular trait value was low.
The forest canopy is in many ways analogous to edge hab-
itats like those found in floodplains, and both are thought
to harbor higher concentrations of birds that undergo sea-
sonal movements than the interior of tall forest (Levey and
Stiles 1992). Both canopy and floodplain bird species have
lower subspecies richness than understory and upland forest
species, respectively (Salisbury et al. 2012). We expect that
a paired study design focused on these traits or larger sam-
ple sizes of species would find stronger associations between
forest stratum and genetic parameters.Moreover,more eco-
logical studies are needed to provide better characteriza-
tions of ecology than the simple binary variables examined
here.
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In summary, we have demonstrated that an ecological trait,
habitat association, predicts variation across species in genetic
diversity and divergence and in parameters related to ecolog-
ical and historical processes. Birds in the interior of upland
forest have greater diversity and more divergence across the
landscape, and these may be a result of lower levels of gene
flow as well as deeper histories in upland forest species. These
habitat-associated differences in genetic parameters may re-
flect different propensities to respond to environmental
change, form new species, and succumb to extinction. Inter-
estingly, the upland forest avifauna contains more species
(1,058) than the floodplain forest avifauna (154) in the Am-
azon basin (Parker et al. 1996). Because species proliferation
is also tied to trait variation (Stanley 1975) and traits may af-
fect population divergence and speciation similarly (Riginos
et al. 2014), the evolutionary differences we detected between
upland forest and floodplain/edge species may have played a
role in producing their disparate diversities. Different conser-
vation strategies may also be necessary to preserve the diver-
gent patterns of genetic diversity and evolutionary processes
observed in upland and floodplain regions. Practically, we
have demonstrated that comparative genomic data sets can
be used to estimate diverse parameters for testing hypotheses
about traits associated with genomic diversity. Studies exam-
ining additional taxa, whole-genome data, improved methods
for estimating and comparing genetic parameters, and data
sources aside from genetic sequences are sure to expand our
understanding of the effects of ecological traits on evolution-
ary patterns and processes in the future.
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