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ABSTRACT

Among those few hypotheses amenable to falsification by phylogenetic methods

concerning the diversification of the Amazonian biota, three can be singled out because of their

verifiable predictions: the riverine barrier, the gradient, and the basal trichotomy hypotheses. I

used phylogenetic and population genetics methods to reconstruct the diversification history of

the genus Xiphorhynchus (aves: Dendrocolaptidae) in Amazonia. First, I estimated the phylogeny

of the entire genus Xiphorhynchus to test a key prediction of the gradient hypothesis; secondly, I

documented phylogeographies of a superspecies associated with upland forest (X. spixii /

elegans) and two species linked to floodplain forest (X. kienerii and X. obsoletus) to evaluate

predictions of the riverine barrier and basal trichotomy hypotheses. The phylogeny estimated for

the genus Xiphorhynchus falsified an anticipated sister relationship between floodplain and

upland forest species, as predicted by the gradient hypothesis. Phylogeographic and population

genetics analyses of the upland forest superspecies (X. spixii / elegans), and floodplain forest

species (X. kienerii and X. obsoletus) indicated that predictions of the riverine barrier hypothesis

hold only for populations of the upland forest superspecies separated by rivers located on the

Brazilian shield; in contrast, rivers located in western Amazonia did not represent areas of

primary divergence for populations of X. spixii / elegans. As expected, populations of the

floodplain forest species showed high levels of gene flow and no geographic structure throughout

the entire Amazon basin, a pattern consistent with their expected capacity to overcome riverine

barriers. In agreement with predictions of the basal trichotomy hypothesis, populations of the X.

spixii / elegans superspecies found on the Brazilian shield were basal in the phylogeny, exhibiting
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some population genetics attributes typical of old populations having reached equilibrium. In

contrast, populations found in western Amazonia were more recently derived and experienced a

dramatic recent population expansion, probably colonizing the area from the geologically older

Brazilian shield. The data presented herein supported important predictions of the basal

trichotomy and riverine barrier hypotheses, indicating that they are not mutually exclusive, and

may together account for the diversification of the genus Xiphorhynchus in Amazonia at different

temporal and geographical scales.
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CHAPTER 1. GENERAL INTRODUCTION

The bird fauna of the Amazon lowlands in South America is the richest in the world, with

over 1,000 species, of which about 265 are endemic (Stotz et al. 1996, Nores 2000). This

unparalleled ornithological diversity has intrigued naturalists since the early days of Amazonian

exploration. As early as 1852, the British naturalist Alfred Russell Wallace put forward an

evolutionary hypothesis to explain the history of diversification of Amazonian vertebrates

(Wallace 1852), and since then, several alternative hypotheses have been proposed (Haffer 1969,

1993, Endler 1977, Colinvaux 1993, Bush 1994, Marroig and Cerqueira 1997). Few testable

predictions, however, could be derived from these hypotheses of diversification (Patton and Silva

1998); the biggest hurdle is the lack of specific temporal and geographic contexts in the

formulation of most of the proposed hypotheses, making them hard to falsify by phylogenetic

methods (Patton and Silva 1998). For example, although the refuge hypothesis has been widely

applied to tropical forest ecosystems around the globe (Haffer and Prance 2001), it is nearly

impossible to be falsified in a phylogenetic context (Patton and Silva 1998).

To distinguish effectively among competing hypotheses of species diversification, several

researchers have attempted to adopt a phylogeographic approach to study the diversification of

the Amazonian biota (Patton and Silva 1998, Silva and Patton 1998, Lougheed et al. 1999,

Moritz et al. 2000). The phylogeographic approach is the combined assessment of the phyletic

(genealogical) and geographic components of allele distributions among populations and closely

related species (Harrison 1991). These distributions can be contrasted with explicit expectations

of geographical relationships among ancestral populations prior to divergence under the three
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main models of species formation available: allopatric, parapatric, and sympatric (Harrison

1991). Furthermore, phylogeographies can be also used to infer the timing of speciation for

groups with poor or no fossil data, as is the case for most terrestrial tropical vertebrates (Moritz

et al. 2000).

Among those few hypotheses of Amazonian diversification amenable to falsification by

phylogenetic methods, three can be singled out because of their generality and verifiable

predictions: the riverine barrier, the gradient, and the recently developed basal trichotomy

hypotheses (Moritz et al. 2000, Bates in press). Below, I introduce these three hypotheses and

outline their main phylogeographic predictions. In spite of being hardly falsified by phylogenetic

methods, I also discuss the refuge hypothesis and some of its predictions under a population

genetics framework (Capparella 1991).

THE RIVERINE BARRIER HYPOTHESIS

Proposed originally by A. R. Wallace in the mid 19th century (Wallace 1852), this hypothesis

states that major Amazonian rivers, because of their unmatched widths, significantly reduce or

prevent gene flow between populations inhabiting opposite river banks, hence promoting

speciation. That the ranges of several closely related vertebrate taxa abut along major Amazonian

rivers has been interpreted as empirical support to this hypothesis (Hershkovitz 1977, Haffer

1992a, Avilla-Pires 1995).

In a phylogeographic framework, the main prediction of the riverine barrier hypothesis is

that sister intraspecific clades and species will occur across major rivers rather than within major

Amazonian interfluves; furthermore, phylogeographies will allow the distinction between
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primary divergence across rivers (predicted by the riverine barrier hypothesis) versus secondary

contact along rivers between non-sister taxa that diversified elsewhere (Moritz et al. 2000).

A second prediction of the riverine barrier hypothesis comes from the observation that

the upper reaches of all major Amazonian rivers are narrower than the lower reaches; therefore, a

gradual reduction of the “river-barrier effect” is expected to take place from the lower to the

upper part of a river’s course (Haffer 1992a). The expected outcome is a higher genetic similarity

between populations from opposite banks in the headwaters than in the lower parts of rivers

(Gascon et al. 2000).

A third prediction can be derived from the fact that a substantial portion of the

Amazonian fauna thrives in habitats strongly influenced by major rivers, such as flooded várzea

forests and river islands (Remsen and Parker 1983, Stotz et al. 1996). The riverine barrier

hypothesis should not account for the diversification of várzea species because they are capable

of colonizing river islands and crossing rivers, hence establishing populations on opposite banks

(Capparella 1991, Matocq et al. 2000). Therefore, várzea specialist species should act as control

groups when testing the riverine barrier hypothesis, inasmuch as its predictions are not expected

to be fulfilled or verified to the same degree as for those species found exclusively in unflooded

terra-firme forest, away from the influence of the Amazonian riverine system (Matocq et al.

2000, Moritz et al. 2000).

The main temporal prediction of the riverine barrier hypothesis is that sister taxa

separated by rivers began to diverge about 5 million years ago (Late Miocene), when the last

cycle of Cenozoic fluvio-lacustrine deposition ended in western Amazonia, and the Amazon river
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system began to develop as a transcontinental drainage system (Hoorn et al. 1995, Campbell et

al. 2001).

THE REFUGE HYPOTHESIS

The refuge hypothesis was first proposed to explain patterns of species richness in the

Neotropics by Haffer (1969). The refuge hypothesis holds that climatic and vegetational changes

promote cladogenesis in organisms by cyclically fragmenting and reuniting their ranges.

Particularly in the case of upland (terra-firme) rainforest, dry climatic conditions triggered a

contraction and disruption of the area covered by this habitat, which was reduced to a few

isolated fragments, called refuges. Populations of terra-firme species isolated at different refuges

started to diverge and eventually attained reproductive isolation (Haffer 1969). Subsequently,

wet periods determined a re-expansion of the rainforest and associated populations of terra-firme

species. When in secondary contact, sister lineages formerly isolated at different refuges

interacted in two alternative ways: (1) did not introgress because they had become reproductively

isolated (speciation was attained), or (2) introgressed across areas of secondary contact (different

levels of intraspecific differentiation were attained; Haffer 1969).

Unfortunately, the main problem with deriving phylogenetic predictions from the refuge

hypothesis is its ambiguity regarding the hierarchical temporal division of refuges as tracked by

geographically concordant splitting events among independent lineages (Patton and Silva 1998).

However, two important population genetics predictions can be derived from the refuge

hypothesis: (1) episodes of population bottlenecks are expected during dry climatic periods of

forest contraction and isolation, and (2) instances of demographic expansions are supposed to
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follow the onset of wet periods of rainforest expansion (Capparella 1991). Obviously, episodes

of population bottlenecks and demographic expansions are not exclusive predictions of the refuge

hypothesis. Therefore, detection of population bottlenecks and demographic expansions do not

provide irrefutable evidence confirming the refuge hypothesis, but are at least consistent with it.

The main temporal prediction of the refuge hypothesis is very broad: because dry and

wet climatic cycles affecting the distribution of the rainforest are ultimately driven by

astronomical Milankovitch cycles, splits between sister lineages happened during any period of

earth’s history (Haffer and Prance 2001). However, several paleoecological studies indicate

significant climatic and vegetational changes throughout Amazonia during the last 60,000 years,

with a return of wet conditions and associated rainforest expansion since the Last Glacial

Maximum (LGM), about 20,000 years BP (see reviews in Haffer 1997a and Burnham and

Grahan 1999). Therefore, population of terra-firme species are expected to have experienced a

sudden population expansion during the last 20,000 years BP, after a population bottleneck.

A derivative of the refuge hypothesis known as the vanishing refuge hypothesis posits

that rainforest species gradually adapted to drier conditions of a vanishing refuge and eventually

“switched” habitats, abandoning the rainforest and colonizing open habitats (Vanzolini and

Williams 1981). The main phylogenetic prediction of this derivative of the refuge hypothesis is

that sister species will replace each other in dry and wet forest types found nowadays in

Amazonia (Vanzolini and Williams 1981). Under a population genetics framework, population

bottlenecks and range expansions are also expected to have affected populations of these species

replacing each other in different dry and wet habitats.
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THE GRADIENT HYPOTHESIS

The gradient hypothesis is derived from Endler’s (1977, 1982) proposal that current habitat

heterogeneity promotes cladogenesis in tropical habitats. Speciation is accomplished by strong

divergent selection across sharp ecological gradients, even when gene flow is present. Therefore,

genetic differentiation and subsequent speciation can be parapatric or sympatric, instead of

allopatric (Endler 1977). Evidence and examples supporting this hypothesis were recently

reviewed by Smith et al. (2001).

Under a phylogeographic framework, the main prediction of the gradient hypothesis is

that sister species should occupy distinct but adjacent habitats (Moritz et al. 2000). This

prediction is also shared with the vanishing refuge hypothesis, except that the latter hypothesis

necessarily predicts severe population bottlenecks followed by range expansion (Vanzolini and

Williams 1981).

No specific temporal prediction can be derived from the gradient hypothesis, except that

if it accounted for the recent diversification of a lineage, then several sister species pairs replacing

each other in distinct habitats should be observed in a phylogeny.

THE BASAL TRICHOTOMY HYPOTHESIS

The recently proposed basal trichotomy hypothesis is a derivative of the broader

paleogeography hypothesis, which posits that speciation in Amazonia was caused by sea-level

fluctuations and tectonic movements throughout the Tertiary and Quaternary periods (Emsley

1965, Bates in press). The basal trichotomy hypothesis is derived from a paleogeographic

scenario of massive marine incursions into the Amazon during the Tertiary (Räsänen et al. 1995,
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Webb 1995). These marine invasions created an epicontinental sea that inundated the Amazon

lowlands and isolated three large, higher land blocks at different places of the basin: the Guianan

shield in the north; the Brazilian shield in the south; and the base of the eastern slope of the

Andes in the west (Fig. 1.1; Webb 1995). Ancestral populations isolated in these three land

blocks began to diverge from each other and eventually speciated (Bates in press).

Area cladograms based on the distribution of Amazonian primates and birds (Silva and Oren

1996, Bates et al. 1998), and a few phylogenetic studies of some Amazonian birds (Cracraft and

Prum 1988, Prum 1988, Hackett 1993) seem to support this hypothesis by placing one of the

three areas thought to have escaped marine invasions as basal, and therefore inferred as the place

of vicariance and origin for those lineages prior to their diversification and colonization of oth er

parts of the Amazon. Miocene marine incursions into the Amazon have been invoked to explain

the abundance of marine derived fishes and mammals occurring nowadays in Amazonian rivers as

shown by several recent phylogenetic studies (Lovejoy et al. 1998, Lovejoy and Araujo 2000,

Hamilton et al. 2000).

Bates (In press) derived three main predictions of area relationships between currently

recognized centers of endemism for birds in the Amazon based on the basal trichotomy

hypothesis (see Fig. 1.2 for location of areas of endemism):

(1)  The Napo and Inambari areas (including the eastern Andean foothills) should harbor

sister taxa relative to the Guianan (on the Guianan shield) and Belém  / Pará (on the

Brazilian shield) areas;

(2)  The Pará / Belém  areas should contain sister taxa relative to the Guianan and Napo /

Inambari areas;
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Figure 1.1. Areas inferred as being part of the basal trichotomy (according to Bates in press) and
having escaped periods of massive marine incursions in Amazonia during the Tertiary. See text
for detail.
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(3) The Guianan area should be basal relative to the Napo / Inambari and the Pará / Belém

areas. Because splitting events leading to these sets of relationships could have happened

in a relatively short period of time, area cladograms recovered could be ambiguous,

exhibiting a trichotomy among the Guianan, Pará / Belém, and Napo / Inambari areas;

Despite the well-documented existence of marine invasions in the Amazon, the timing of

these incursions is still controversial (Hoorn 1996, Hoorn et al. 1995, Räsänen et al.

1995). The majority of researchers think that major marine introgressions in the Amazon

occurred during the Early and Middle Miocene (Hoorn et al. 1995, Paxton et al. 1996),

not in the late Miocene as advocated by Räsänen et al. (1995).

Whichever of those time frames is correct, the basal trichotomy hypothesis would be

useful in explaining the early diversification of Amazonian avian genera rather than the splitting

of sister species or populations (Bates in press). However, several global changes in sea level

occurred since the Miocene (Hallam 1992), and a complete marine incursion in the Amazon may

not be necessary to isolate forested areas in regions escaping flooding, hence promoting

speciation among terrestrial organisms (Bates in press).

THE AVIAN GENUS XIPHORHYNCHUS AND ITS ROLE AS A MODEL TO STUDY
DIVERSIFICATION IN AMAZONIAN ORGANISMS

Under the phylogeographic and population genetics frameworks, a test of the four hypotheses

outlined above would require a group of organisms with three main characteristics: high species

richness, high ecological diversity, and widespread distribution in the Amazon basin. High
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Figure 1.2. Areas of endemism for birds in Amazonia according to Cracraft (1985). Areas were
inferred based on the overlap in distribution of several endemic species and subspecies (Cracraft
1985).
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species richness is especially important to test the basal trichotomy hypothesis, because this

hypothesis would account for the phyletic (long-term) evolution within a genus. High ecological

diversity is key to test the main prediction of the gradient hypothesis, but also to test the

riverine barrier hypothesis insofar as differences between floodplain (várzea) and upland (terra-

firme) forest specialist species are expected to occur. Finally, a widespread distribution in the

area of interest is essential to study the diversification of a lineage at a scale appropriate to allow

generalizations for the entire Amazon basin.

The avian genus Xiphorhynchus (Dendrocolaptidae) fulfills all the requirements outlined

above and provides an excellent model to investigate the historical diversification of Amazonian

organisms. Two species (X. kienerii and X. obsoletus) occur solely in seasonally flooded forest

types, whereas three other species (X. ocellatus, X. spixii, and X. pardalotus) are restricted to

non-flooded forest (Stotz et al. 1996). Two other species (X. picus and X. guttatus) are found in a

wide variety of habitats, including várzea, terra-firme, secondary forest, and forest edge (Stotz et

al. 1996). Furthermore, species of Xiphorhynchus are among the commonest and most

widespread woodcreepers in Amazonia, with up to five species occurring sympatrically in parts

of western Amazonia (Terborgh et al. 1990, Ridgely and Tudor 1994, pers. obs.).

Here, I use the phylogeographic approach to reconstruct the history of diversification for

the genus Xiphorhynchus in the Amazon basin. The main goal is to use phylogenies to evaluate

predictions of the four diversification hypotheses discussed above. First, I generate a

phylogenetic hypothesis for the entire genus Xiphorhynchus to test a key prediction of the

gradient hypothesis. Second, I carry out phylogeographic and population genetics analyses of a

superspecies of Xiphorhynchus associated with the terra-firme habitat (X. spixii / elegans), and
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two species linked to várzea forest (X. kienerii and X. obsoletus) to evaluate predictions of the

riverine barrier, refuge, and basal trichotomy hypotheses. Third, based on the data presented

herein, I discuss the significance of the riverine barrier, refuge, gradient, and basal trichotomy

hypotheses in the diversification of the Amazonian biota, proposing some refinements to these

hypotheses.
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CHAPTER 2. MOLECULAR SYSTEMATICS AND THE ROLE OF THE VÁRZEA-
TERRA-FIRME ECOTONE IN THE DIVERSIFICATION OF XIPHORHYNCHUS

Avian species richness in the Neotropics has traditionally been explained by allopatric

speciation models, such as the “refuge” (Haffer 1969), “river” (Snethlage 1913), and “Andean

uplift” hypotheses (Chapman 1917). Alternative hypotheses involving sympatric and parapatric

speciation scenarios have been largely dismissed as secondary in importance (Haffer 1992b),

despite the scarcity of explicit tests evaluating their predictions under a phylogenetic framework

(but see Bates and Zink 1994, Arctander and Fjeldså 1994). Endler (1982) argued that strong

divergent selection across sharp ecological gradients can account for differentiation and speciation

among tropical organisms. Evidence for such an important role played by ecotones as areas of

population differentiation was found in studies on population genetics and morphometrics of

two phylogenetically distinct central African bird species (Smith et al. 2001).

In the Amazon Basin, two distinct and adjacent forest types dominate the landscape: the

várzea forest (which floods every year) and the terra-firme forest (which does not flood on a

regular basis). About 15% of the terrestrial Amazonian avifauna is known to be restricted or

nearly restricted to várzea forests (Remsen and Parker 1983). Little is known about the origin

and evolution of this characteristic avifauna, in part because of the paucity of phylogenetic

studies on Neotropical bird groups. One possible scenario, as suggested by the abrupt

replacement of many congeneric avian species pairs across the várzea - terra-firme ecotone

(Robinson and Terborgh 1997), is that this ecological gradient contributed directly to population

differentiation and ultimately to speciation within these lineages. An important prediction of this
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hypothesis is that congeneric species pairs replacing each other across the várzea - terra-firme

ecotone ought to be recently derived sister taxa (Moritz et al. 2000).

With species restricted to both várzea and terra-firme forests, the avian genus

Xiphorhynchus provides an excellent model for studying the history of habitat specialization and

its role as a possible speciation mechanism among Amazonian organisms (Table 2.1). In the only

phylogenetic hypothesis proposed so far for Dendrocolaptidae (sensu A.O.U 1998),

relationships within Xiphorhynchus are largely unresolved, with most species making part of a

polytomy that includes taxa grouped in other genera as well, such as Campyloramphus,

Dendrexetastes, and Lepidocolaptes (Raikow 1994). Raikow (1994) suggested that the anatomical

characters he studied could not distinguish species level differences in the genera Hylexetastes,

Xiphorhynchus, and Lepidocolaptes, stating that “the solution…must await analysis of other

types of data that show sufficient variation at the appropriate taxonomic level.” More recently,

García-Moreno and Silva (1997) found molecular evidence indicating that the Lesser

Woodcreeper (Lepidocolaptes fuscus) is actually more closely related to Xiphorhynchus than to

any of the six Lepidocolaptes species they sampled. Despite their findings, these authors

suggested caution concerning the inclusion of Lepidocolaptes fuscus in Xiphorhynchus before a

phylogeny of all Xiphorhynchus species is available. As yet, neither the monophyly nor the

position of Xiphorhynchus within Dendrocolaptidae has been properly assessed. The situation at

lower taxonomic levels is also poorly resolved: many polytypic Xiphorhynchus species have

several well differentiated populations once considered separate species (Cory and Hellmayr

1925). In fact, even today there is no consensus regarding the taxonomic status of many
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Table 2.1 - Common name, habitat preferences, and distribution of currently recognized species
of Xiphorhynchus a.

Species Common name Habitat b Distribution
X. erythropygius Spotted Woodcreeper L, M Central America and Chocó
X. flavigaster Ivory-billed Woodcreeper L, M, D, S, PO Central America
X. guttatus Buff-throated Woodcreeper L, TF, V, S Amazonia and eastern

Brazil
X. kienerii c Zimmer's Woodcreeper V Amazonia
X. lachrymosus Black-striped Woodcreeper L, MA Central America and Chocó
X. obsoletus Striped Woodcreeper V Amazonia
X. ocellatus Ocellated Woodcreeper TF, M d Amazonia and eastern slope

of the Andes
X. pardalotus Chestnut-rumped Woodcreeper TF, M d Amazonia and Tepuis
X. picus Straight-billed Woodcreeper V, D, S, MA Central America and Chocó
X. spixii Spix's Woodcreeper TF, M d Amazonia and eastern slope

of the Andes
X. susurrans Cocoa Woodcreeper L, D, S, MA Central America and trans-

Andean South America
X. triangularis Olive-backed Woodcreeper M W. slope of the Andes

a Following the taxonomy of Zimmer (1934b), Peters (1951), and the A. O. U. (1998). The taxon
Xiphorhynchus striatigularis, known only by its type specimen, is now regarded as an aberrant
individual of X. flavigaster (Winker 1995).
b Based on Stotz et al. (1996) and complemented with personal observations. D - Tropical
deciduous forest; L - Tropical lowland evergreen forest; M - Montane evergreen forest; MA -
Mangrove forest; PO - Pine-oak forest; S - Secondary forest; TF - Amazonian terra-firme forest;
V - Amazonian várzea forest.
c Formerly known as X. necopinus, a name now considered a junior synonym of X. kienerii
(Aleixo and Whitney 2002.).
d Restricted to terra-firme forest in lowland Amazonia.
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subspecies of X. guttatus and X. spixii (contrast Ridgely and Tudor 1994 with Stotz et al. 1996

and Haffer 1997b).

The current lack of resolution concerning the evolutionary history of Xiphorhynchus

prevents its use as a model to study the role of habitat specialization as a possible diversification

mechanism in the Neotropics. Here, I present a phylogenetic hypothesis for the genus

Xiphorhynchus based on mitochondrial DNA (mtDNA) sequences to: (1) evaluate the

monophyly of Xiphorhynchus and its relationship with other Dendrocolaptidae genera; (2) assess

species limits within some polytypic Xiphorhynchus species; and (3) evaluate the prediction of a

sister relationships between várzea and terra-firme species, as expected if the várzea - terra-

firme ecotone played a decisive role in population differentiation and subsequent speciation

within Xiphorhynchus.

METHODS

Taxa Sequenced. - In addition to all known Xiphorhynchus species, I sampled at least one species

belonging to all extant woodcreeper genera except Dendrocincla, Deconychura, and Drymornis

(Appendix 1). Studies based on anatomical characters indicate that the latter genera are not

closely related to Xiphorhynchus (Feduccia 1973, Raikow 1994); instead, I sampled the genera

Lepidocolaptes (Lineated Woodcreeper [L. albolineatus], Narrow-billed Woodcreeper [L.

angustirostris], and L. fuscus) and Campyloramphus (Black-billed Scythebill [C. falcularius],

Curve-billed Scythebill [C. procurvoides], and Red-billed Scythebill [C. trochilirostris]) more

thoroughly because of their supposed closer relationship with Xiphorhynchus (Feduccia 1973,

Raikow 1994, García-Moreno and Silva 1997). At the generic level, my goal was to assess the
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monophyly of Xiphorhynchus and its relationships with other woodcreeper genera rather than to

propose a phylogenetic hypothesis for the whole family Dendrocolaptidae. No genera from other

families were included in the analysis because the monophyly of Dendrocolaptidae has been

supported by studies based on DNA-DNA hybridization (Sibley and Ahlquist 1990) and

morphological characters (Raikow 1994, Clench 1995). At lower taxonomic levels, I sampled

subspecies of species whose limits have been controversial according to taxonomists working on

Neotropical birds (Cory and Hellmayr 1925, Zimmer 1934b, Peters 1951, Pinto 1978, Ridgely

and Tudor 1994, Haffer 1997b). Thus, taxa belonging to the following species were sampled:

brevirostris, chunchotambo, ocellatus, and weddellii (X. ocellatus); aequatorialis and insolitus (X.

erythropygius); eytoni, dorbignyanus, guttatoides, guttatus, polystictus, and susurrans (X.

gutattus); elegans, juruanus, ornatus, and spixii (X. spixii); and finally bangsi and intermedius (X.

triangularis). These taxa do not represent an exhaustive list of subspecies belonging to each

polytypic species, but they cover major divisions within those species based primarily on

plumage patterns (Cory and Hellmayr 1925, Zimmer 1934b). I also sampled subspecies

belonging to species whose limits are not controversial to contrast their intraspecific level of

genetic variation with those of the controversial polytypic species listed above. Thus, I sampled

the following taxa: eburneirostris and flavigaster (X. flavigaster); and altirostris, bahiae, phalara,

and picus (X. picus).

DNA Sequencing. - Total genomic DNA was extracted from tissue samples using a Qiagen tissue

extraction kit or a standard phenol/chloroform method (Hillis et al. 1990). Samples from STRI

were obtained as lyophilized DNA. Fragments of the mitochondrial genome were amplified using

11 primers spanning most of ctytochrome b (1,035 bp) and the entire NADH dehydrogenase
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subunits 2 (ND2; 1,041 bp) and 3 (ND3; 354 bp) genes. Primers used for cytochrome b were:

L14990 (Kocher et al. 1989), L15389 (Hackett 1996), H15710 (Helm-Bychowski and Cracraft

1993), HXIPH (CATTCTGGTTTGATGTGGGG; designed specifically for this project),

L15505 (CTAACCTTCCTACACGAAACC; designed specifically for this project), L15656

(Helm-Bychowski and Cracraft 1993), and H16065 (Hackett 1996). Primers used for ND2 were:

L5215 (Hackett 1996), H5578 (Hackett 1996), L5758X (modified from primer published by

Johnson and Sorenson [1998; GGATGAGCRGGYCTAAAYCARAC]), and H6313 (Johnson

and Sorenson 1998). For ND3, I used primers L10755 and H11151 (Chesser 1999). All primer

numbers refer to the 3’ base of the published chicken mtDNA sequence (Desjardins and Morais

1990). Fragments were PCR amplified using standard conditions available upon request:

denaturation at 94°C, annealing between 50°C and 57°C, and extension at 72°C in a Hybaid

OMN-E thermal cycler. A small aliquot of each amplification was electrophoresed on an agarose

gel to check for the correct fragment size and to ensure that only a single amplification product

was obtained. Amplification products were cleaned with a Qiagen PCR purification kit and cycle-

sequenced using a Big Dye Terminator kit (Perkin Elmer, Norwalk, Connecticut), and all

amplification primers listed above. Cycle sequencing reactions were NH4OAC precipitated,

dried, resuspended in a formamide EDTA, and run on an ABI 377 Automated DNA Sequencer. I

aligned and reconciled sequences from both strands within and between species using Sequencher

3.1.1 (Genecodes, Madison, Wisconsin). The following measures outlined by Sorenson and

Quinn (1998) and Bates et al. (1999) were taken to ensure that the DNA fragments amplified

were accurate and of mitochondrial origin (not pseudogenes): (1) most sequences were amplified
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in large fragments (> 1,000 bp); (2) both DNA strands were sequenced; (3) sequences were

aligned with the chicken complete mtDNA sequence, and inspected for insertions, deletions, and

stop codons that would result in a nonfunctional protein; (4) sequences were expected to exhibit

high transition to transversion substitution ratios characteristic of mitochondrial, not nuclear

substitution patterns; and (5) a partition homogeneity test was performed to evaluate if the

phylogenetic signal of the three different gene sequences was similar. Pseudogenes do not

necessarily yield the same phylogenetic signal as mitochondrial genes. I could not detect any

evidence of pseudogenes in the sequences used for this study. After these procedures, sequences

were submitted to GenBank (AY089790 – AY089918; Appendix 1).

Phylogenetic Analyses. - I performed a partition homogeneity test as implemented in PAUP*

4.0b7 (Swofford 1998) with 100 replicates to determine if the different mitochondrial genes

sequenced could be combined for phylogenetic analysis (Farris et al. 1995). Another partition

homogeneity test compared third with first and second codon positions to evaluate if third

positions gave a different phylogenetic signal due to saturation at deeper divergence levels.

Maximum parsimony and maximum likelihood heuristic searches (referred to as MP and ML,

respectively, throughout this paper) were conducted with PAUP* 4.0b7. MP analyses were

based on unweighted sequence data. I used the likelihood ratio test as implemented in

MODELTEST (Posada and Crandall 1998) to select the best and simplest model of molecular

evolution fitting my dataset, which was then used in all ML analyses. I used 100 nonparametric

bootstrap replications (referred to as BP throughout the paper) to evaluate confidence levels of

nodes for all phylogenies obtained with MP and ML (Felsenstein 1985). Because of computer

limitations, only one addition-sequence replicate was performed for each bootstrap replicate in
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the likelihood analyses. To further explore the sensitivity of the data to methods of analysis, I

also performed a Bayesian inference of phylogeny using the MrBayes software, version 1.11

(Huelsenbeck 2000). Bayesian analysis provides posterior probability values for different

phylogenetic parameters, such as topology, branch lengths, and substitution patterns, producing

essentially the same result as ML given the same model of nucleotide substitution (Huelsenbeck

2000). However, instead of estimating these parameters by maximizing their likelihoods on a

single tree (like ML), the Bayesian approach samples multiple trees and parameter values from

their near optimal position (i.e. near their global maximum). This produces a posterior probability

distribution from which a consensus tree is generated. The interpretation of the result of a

Bayesian estimate of phylogeny is straightforward: the posterior probability of any single clade

in a given phylogeny is the percentage of time that the clade appeared in the sample of trees

representing the posterior distribution. Because the posterior probabilities of all possible trees

add up to 1, a given clade with a support of 1 or 100% occurred in all possible trees generated by

MrBayes under a wide variety of substitution parameters, assuming a specific model of sequence

evolution. In general, Bayesian analyses generate consensus trees with higher posterior

probabilities than bootstrap proportions under a ML approach (Rannala and Yang 1996). I ran

MrBayes 1.11 with the following specifications: (1) assuming a general time reversible model of

nucleotide substitution with estimated base frequencies, proportion of invariable sites, and rates

for variable sites following a gamma distribution (model GTR+G+I), as selected by

MODELTEST; and (2) running the Markov chain for 500,000 generations, sampling 1 tree every

100 generations. Following recommendations outlined by Huelsenbeck and Hall (2001), I

discarded trees obtained before the Markov chain reached convergent and stable likelihood values.
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I used PAUP* 4.0b7 to compute a majority-rule consensus tree of the sampled trees. The

proportion of times a given clade was sampled equal to its posterior probability of occurrence.

Because the increase in computational time required for the completion of ML and Bayesian

analyses grows with the number of taxa, I divided these analyses into two parts: (1) one

containing only one individual each of the 25 sampled species (all the twelve Xiphorhynchus

species plus thirteen outgroups) and (2) another containing 29 taxa belonging to 10

Xiphorhynchus species defined as monophyletic by the first analysis plus three outgroups. The

purpose of the first analysis was to assess the monophyly of Xiphorhynchus, whereas the

second analysis dealt with polytypic Xiphorhynchus species limits.

RESULTS

Informative Variation. - For most taxa, the dataset upon which phylogenetic analyses were

inferred contained 2,430 characters, corresponding to positions 5241 to 6278 (ND2), 10776 to

11127 (ND3), and 15001 to 16035 (cyt b) of the mtDNA chicken sequence (Desjardins and

Morais 1990). Parsimony informative sites were evenly distributed among the three genes: 330

ND2 (31.7% of total bases), 112 ND3 (31.6%), and 291 cty b (28.1%). A partition homogeneity

test performed among the three genes did not detect significant differences in their phylogenetic

content (P = 0.3). Another partition homogeneity test contrasting first and second with third

codon positions also did not uncover significantly different phylogenetic signals among these data

partitions (P = 0.39). Therefore, sequence data from all genes and codon positions were combined

for phylogenetic analyses.
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Sequence Divergence. - Uncorrected (“p”) sequence divergence levels among all Xiphorhynchus

taxa ranged from 0.08% (between two subspecies of X. picus) to 11.2 % (between X. ocellatus

and X. picus; Table 2.2). When X. picus and X. kienerii are excluded, sequence divergence levels

among the remaining monophyletic Xiphorhynchus taxa ranged from 0.37% (between two

subspecies of X. guttatus) to almost 10% (between X. obsoletus and X. ocellatus; Table 2.2).

Levels of sequence divergence between Xiphorhynchus (excluding X. picus and X. kienerii) and

outgroups (excluding Lepidocolaptes fuscus) ranged from 9.2% (between Lepidocolaptes

angustirostris and X. spixii ornatus) to almost 15% (between X. guttatus dorbignyanus and

Sittasomus griseicapillus [Olivaceous Woodcreeper]; Table 2.2). When X. picus and X. kienerii

were excluded, even third codon position substitutions accumulated linearly with overall genetic

distance within and among Xiphorhynchus species (plot not shown), indicating that saturation

does not seem to be a problem among these taxa. Levels of genetic differentiation among some

subspecies of X. guttatus, X. ocellatus, and X. spixii reached or exceeded those found between

undisputed sister biological species of Xiphorhynchus, such as X. flavigaster and X. lachrymosus

(p = 4.2 - 4.4%; Table 2.2) or between X. ocellatus and X. pardalotus (p = 3.4 - 3.9%; Table 2.2).

In contrast, subspecific genetic differentiation between subspecies of X. erythropygius, X.

flavigaster, and X. triangularis averaged about 1% (Table 2.2).

MP Analyses. - Equally weighted MP analyses resulted in two most parsimonious trees (length

3,433; CI=0.35; RI=0.6). Figure 2.1 shows a strict consensus of these two most parsimonious

trees and bootstrap confidence values for its nodes. All Xiphorhynchus, Lepidocolaptes, and

Campyloramphus species were monophyletic at 97% BP support. The only difference between

the topologies of the two most parsimonious trees pertained to the position of the sibling species
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Taxon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 Glyphorynchus spirurus
2 Sittasomus griseicapillus 0.156
3 Nasica longirostris 0.148 0.148
4 Dendrocolaptes certhia 0.144 0.141 0.112
5 Lepidocolaptes albolineatus 0.138 0.138 0.125 0.121
6 L. angustirostris 0.138 0.141 0.119 0.119 0.044
7 L. fuscus 0.137 0.136 0.124 0.115 0.099 0.093
8 Campyloramphus trochilirostris 0.141 0.139 0.123 0.125 0.103 0.100 0.106
9 C. procurvoides 0.140 0.133 0.123 0.123 0.104 0.102 0.102 0.041

10 C. falcularius 0.142 0.136 0.125 0.123 0.099 0.099 0.100 0.073 0.073
11 Hylexetastes perrotii 0.146 0.144 0.116 0.107 0.119 0.110 0.118 0.120 0.120 0.126
12 Xiphocolaptes promeropirhynchus 0.139 0.142 0.109 0.106 0.117 0.115 0.112 0.124 0.123 0.121 0.090
13 Dendrexetastes rufigula 0.139 0.141 0.105 0.102 0.120 0.115 0.114 0.117 0.115 0.116 0.112 0.106
14 Xiphorhynchus erythropygius Panama 0.148 0.141 0.127 0.123 0.099 0.104 0.093 0.106 0.109 0.108 0.119 0.117 0.119
15 X. erythropygius Ecuador 0.147 0.142 0.130 0.122 0.101 0.106 0.094 0.109 0.110 0.112 0.119 0.115 0.118 0.014
16 X. flavigaster Mexico 0.132 0.141 0.128 0.117 0.105 0.104 0.088 0.104 0.104 0.106 0.121 0.122 0.117 0.077 0.077
17 X. flavigaster Belize 0.131 0.139 0.126 0.117 0.102 0.104 0.083 0.103 0.106 0.106 0.119 0.120 0.120 0.073 0.074 0.017
18 X. guttattus guttatus 0.140 0.146 0.127 0.115 0.102 0.104 0.090 0.106 0.109 0.110 0.121 0.124 0.120 0.080 0.083 0.062 0.063
19 X.  g. dorbignyanus 0.141 0.148 0.126 0.119 0.097 0.099 0.087 0.104 0.108 0.104 0.121 0.126 0.117 0.073 0.077 0.058 0.057 0.046
20 X. g. eytoni 0.137 0.145 0.128 0.121 0.102 0.100 0.087 0.105 0.110 0.105 0.123 0.127 0.117 0.073 0.077 0.057 0.057 0.048 0.022
21 X. g. guttatoides S. Amazon 0.141 0.149 0.127 0.120 0.099 0.101 0.087 0.107 0.112 0.107 0.122 0.124 0.118 0.074 0.078 0.061 0.059 0.046 0.006 0.023
22 X. g. guttatoides N. Amazon 0.140 0.149 0.128 0.122 0.097 0.100 0.088 0.106 0.110 0.106 0.120 0.125 0.118 0.075 0.078 0.060 0.059 0.046 0.005 0.022 0.004
23 X. g. polystictus 0.141 0.147 0.127 0.117 0.102 0.105 0.092 0.108 0.111 0.110 0.122 0.125 0.121 0.080 0.082 0.063 0.063 0.004 0.047 0.050 0.048 0.047
24 X. g. vicinalis 0.140 0.148 0.127 0.121 0.099 0.101 0.087 0.105 0.110 0.105 0.120 0.125 0.119 0.075 0.079 0.058 0.059 0.047 0.007 0.024 0.011 0.010
25 X. kienerii 0.149 0.137 0.124 0.123 0.105 0.099 0.104 0.105 0.108 0.107 0.116 0.129 0.115 0.106 0.106 0.111 0.109 0.107 0.107 0.107 0.107 0.107
26 X. lachrymosus 0.136 0.145 0.129 0.122 0.101 0.102 0.089 0.106 0.106 0.112 0.125 0.121 0.122 0.080 0.082 0.042 0.044 0.063 0.061 0.061 0.063 0.061
27 X. obsoletus 0.139 0.146 0.127 0.122 0.107 0.100 0.092 0.106 0.102 0.111 0.126 0.120 0.124 0.083 0.086 0.082 0.079 0.079 0.077 0.077 0.077 0.077
28 X. ocellatus ocellatus 0.137 0.134 0.115 0.115 0.101 0.098 0.079 0.103 0.098 0.100 0.119 0.118 0.110 0.094 0.094 0.091 0.089 0.095 0.094 0.092 0.096 0.095
29 X. o. brevirostris 0.140 0.137 0.116 0.114 0.105 0.102 0.077 0.111 0.107 0.100 0.119 0.117 0.115 0.095 0.095 0.089 0.085 0.091 0.092 0.090 0.093 0.093
30 X. o. chunchotambo 0.139 0.134 0.113 0.114 0.104 0.099 0.076 0.108 0.105 0.101 0.119 0.116 0.115 0.092 0.092 0.088 0.082 0.089 0.089 0.088 0.091 0.091
31 X. o. napensis 0.137 0.137 0.117 0.121 0.105 0.097 0.082 0.111 0.104 0.106 0.119 0.117 0.116 0.094 0.096 0.096 0.093 0.098 0.097 0.096 0.097 0.096
32 X. pardalotus 0.134 0.128 0.112 0.111 0.101 0.096 0.076 0.103 0.096 0.096 0.111 0.109 0.111 0.092 0.091 0.084 0.083 0.089 0.086 0.084 0.089 0.088
33 X. picus  Venezuela 0.141 0.153 0.130 0.125 0.103 0.097 0.096 0.103 0.096 0.105 0.114 0.121 0.121 0.106 0.107 0.106 0.105 0.104 0.106 0.105 0.105 0.105
34 X. picus Trinidad 0.140 0.147 0.128 0.122 0.097 0.092 0.100 0.104 0.103 0.107 0.115 0.118 0.122 0.107 0.109 0.106 0.106 0.107 0.105 0.104 0.104 0.103
35 X. picus Amazon 0.141 0.152 0.130 0.126 0.103 0.097 0.096 0.104 0.098 0.106 0.115 0.121 0.121 0.107 0.108 0.105 0.105 0.104 0.106 0.105 0.105 0.104
36 X. picus Se. Brazil 0.142 0.153 0.129 0.126 0.103 0.097 0.096 0.103 0.095 0.105 0.113 0.120 0.121 0.107 0.108 0.106 0.106 0.105 0.107 0.106 0.106 0.105
37 X. spixii spixii 0.137 0.138 0.120 0.113 0.098 0.100 0.067 0.108 0.104 0.101 0.117 0.108 0.115 0.090 0.088 0.080 0.075 0.085 0.083 0.082 0.084 0.083
38 X. s. ornatus 0.139 0.129 0.114 0.109 0.090 0.092 0.067 0.100 0.099 0.098 0.110 0.108 0.112 0.083 0.085 0.084 0.077 0.080 0.084 0.083 0.084 0.084
39 X. s. elegans 0.140 0.137 0.116 0.114 0.095 0.097 0.069 0.104 0.104 0.103 0.114 0.112 0.114 0.082 0.083 0.086 0.081 0.086 0.083 0.083 0.083 0.083
40 X. s. juruanus 0.141 0.133 0.117 0.111 0.092 0.093 0.067 0.104 0.101 0.100 0.113 0.110 0.113 0.081 0.083 0.083 0.078 0.080 0.082 0.083 0.082 0.082
41 X. susurrans 0.143 0.146 0.126 0.115 0.104 0.104 0.093 0.105 0.108 0.108 0.120 0.125 0.121 0.080 0.081 0.062 0.064 0.035 0.054 0.053 0.053 0.052
42 X. triangularis Peru 0.140 0.140 0.126 0.117 0.093 0.097 0.091 0.102 0.105 0.107 0.109 0.107 0.113 0.049 0.046 0.077 0.076 0.081 0.074 0.074 0.074 0.074
43 X. triangularis Bolivia 0.141 0.140 0.127 0.117 0.094 0.097 0.093 0.105 0.106 0.107 0.108 0.107 0.115 0.051 0.049 0.079 0.078 0.080 0.075 0.075 0.076 0.076

Table 2.2 - Uncorrected (p) distance among taxa.
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23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0.049
0.107 0.109
0.063 0.063 0.102
0.081 0.077 0.108 0.083
0.095 0.094 0.105 0.098 0.098
0.092 0.092 0.104 0.092 0.099 0.050
0.090 0.089 0.105 0.091 0.099 0.051 0.010
0.098 0.095 0.110 0.099 0.100 0.039 0.058 0.056
0.089 0.085 0.106 0.087 0.095 0.034 0.047 0.047 0.040
0.106 0.106 0.078 0.097 0.108 0.111 0.107 0.105 0.109 0.108
0.108 0.106 0.078 0.098 0.108 0.109 0.109 0.106 0.109 0.108 0.028
0.106 0.105 0.078 0.097 0.108 0.112 0.108 0.106 0.109 0.109 0.002 0.029
0.105 0.106 0.079 0.099 0.109 0.110 0.107 0.106 0.109 0.108 0.001 0.029 0.003
0.086 0.083 0.104 0.085 0.090 0.067 0.061 0.063 0.066 0.061 0.106 0.106 0.105 0.106
0.080 0.084 0.093 0.088 0.092 0.062 0.061 0.059 0.067 0.062 0.099 0.100 0.100 0.100 0.043
0.087 0.085 0.097 0.089 0.092 0.065 0.066 0.063 0.066 0.063 0.101 0.103 0.101 0.102 0.043 0.019
0.081 0.082 0.093 0.083 0.089 0.063 0.063 0.061 0.063 0.060 0.098 0.099 0.098 0.099 0.041 0.018 0.016
0.035 0.054 0.107 0.065 0.082 0.093 0.095 0.091 0.100 0.094 0.102 0.104 0.102 0.102 0.089 0.081 0.084 0.078
0.081 0.077 0.100 0.076 0.081 0.093 0.096 0.092 0.090 0.087 0.106 0.108 0.107 0.107 0.090 0.087 0.086 0.085 0.079
0.080 0.079 0.101 0.079 0.083 0.094 0.098 0.094 0.090 0.087 0.108 0.110 0.109 0.109 0.091 0.088 0.087 0.086 0.080 0.004

Table 2.2. - Extended.
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Figure 2.1. Strict consensus of two most parsimonious trees (Length = 3,433, CI = 0.35, RI =
0.6) obtained with unweighted sequence data. Numbers above branches refer to bootstrap
support based on 100 replicates. Note the monophyly of species restricted to terra-firme forest
in lowland Amazonia (taxa indicated by an asterisk followed by TF) and the polyphyly of
várzea specialist species (taxa indicated by an asterisk followed by V).
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pair X. picus and X. kienerii: one tree placed these species as basal to the entire Lepidocolaptes -

Campyloramphus - Xiphorhynchus clade, whereas the other tree placed them as the sister group

only to the Campyloramphus - Lepidocolaptes clade. Monophyly of Lepidocolaptes fuscus and

all Xiphorhynchus species, except X. picus and X. kienerii, received 98% BP support.

When the two MP trees recovered are constrained (using software MacClade 4.0;

Maddison and Maddison 2000), so that X. picus plus X. kienerii becomes the sister clade to all

remaining Xiphorhynchus plus Lepidocolaptes fuscus, a cladogram with six additional steps is

obtained. Within the Xiphorhynchus – Lepidocolaptes fuscus clade, two other, major well

supported clades existed: (1) one containing all Amazonian Xiphorhynchus species specialized in

terra-firme forest with the Atlantic forest endemic Lepidocolaptes fuscus as their sister taxon;

and (2) another clade containing the remaining Xiphorhynchus species, found throughout the

Neotropics. The strict MP consensus tree (Fig. 2.1) also had nodes with high BP values

indicating the paraphyly of two Xiphorhynchus biological species: X. guttatus and X. ocellatus.

The lowland Amazonian X. o. ocellatus and X. o. weddellii were sisters to the Guianan endemic X.

pardalotus, whereas the two Andean foothill subspecies of X. ocellatus (chunchotambo and

brevirostris) were basal to this clade. Lowland Amazonian subspecies of X. guttatus were also

paraphyletic: X. g. guttatus from eastern Brazil and X. g. polystictus from coastal northeastern

Amazonia were sisters to the Central American X. susurrans, to the exclusion of southern and

western Amazonian subspecies of X. guttatus.

ML Analyses. - For both ML analyses performed, independent likelihood ratio tests as

implemented in MODELTEST (Posada and Crandall 1998) selected a general time reversible

model of nucleotide substitution with estimated base frequencies, proportion of invariable sites,
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and rates for variable sites following a gamma distribution (Figs. 2.2 and 2.3). The first ML

analysis produced a tree with all Xiphorhynchus species forming a well supported monophyletic

group (BP = 95%) to the exclusion of X. picus and X. kienerii (Fig. 2.2). These latter species were

placed as the sister clade to the genera Campyloramphus and Lepidocolaptes, as depicted in one

of the two MP trees. However, in the ML analysis, the node linking X. picus and X. kienerii to

Campyloramphus and Lepidocolaptes had a low BP (28%). As in MP analyses, within the clade

containing all Xiphorhynchus species (excluding X. picus and X. kienerii), two clades supported

by high BP values were found: (1) a “first” clade containing all Xiphorhynchus species restricted

to terra-firme forest plus Lepidocolaptes fuscus as their sister taxon (BP = 95%), and (2) a

“second” clade with the remaining Xiphorhynchus species (BP = 100%). The second ML analysis

produced a tree depicting the same relationships among subspecies of polytypic Xiphorhynchus

species as the MP trees but with higher bootstrap support for many nodes (Fig. 2.3). Both ML

trees differed from the MP trees in their placement of Xiphorhynchus obsoletus: MP trees placed

this species as the sister taxon to all the remaining species grouped in the “second”

Xiphorhynchus clade defined above, whereas ML trees placed this species as sister only to the

clade containing X. flavigaster, X. guttatus, X. lachrymosus, and X. susurrans. However, in both

ML analyses, the node linking X. obsoletus with the latter species to the exclusion of X.

erythropygius and X. triangularis was short and not well supported by bootstrap analyses (Figs.

2.2 and 2.3).

Bayesian Inference of Phylogeny. - Mirroring MP and ML trees, the first Bayesian inference of

phylogeny depicting higher level relationships between Xiphorhynchus and other

Dendrocolaptidae genera contained a clade with high probability of occurrence (99%) grouping all
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Figure 2.2. Single most likely tree obtained with ML under the GTR+G+I model of molecular
evolution (-ln likelihood = 15421.05). Estimated base frequencies were A = 0.33, C = 0.35, G =
0.09, T = 0.23; proportion of sites estimated to be invariant = 0.56; estimated value of gamma
shape parameter = 1.68. Numbers above or under branches refer to bootstrap support of 50% or
higher based on 100 replicates. Note the monophyly of species restricted to terra-firme forest in
lowland Amazonia (taxa indicated by an asterisk followed by TF) and the polyphyly of várzea
specialist species (taxa indicated by an asterisk followed by V).
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Figure 2.3. Results of ML analyses under the GTR+G+I model of molecular evolution (-ln
likelihood = 11603.4). Estimated base frequencies were A = 0.31, C = 0.34, G = 0.10, T = 0.25;
proportion of sites estimated to be invariant = 0.59; estimated value of gamma shape parameter =
1.86. Numbers above or next to branches refer to bootstrap support based on 100 replicates.
Short branches without numbers received at least 82% support and are not shown here for sake
of clarity. Taxa restricted to terra-firme and várzea forests in lowland Amazonia are indicated by
asterisks followed by the codes TF and V, respectively.
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Campyloramphus, Lepidocolaptes, and Xiphorhynchus species (Fig. 2.4). Within this clade, two

subclades existed: (1) one with a posterior probability of 100%, containing Lepidocolaptes fuscus

and all Xiphorhynchus species except X. picus and X. kienerii, and (2) a second clade with a

posterior probability of 64% containing X. picus, X. kienerii, two Lepidocolaptes species, and

Campyloramphus (Fig. 2.4). As in MP and ML analyses, Xiphorhynchus species specialized in

terra-firme forest formed a monophyletic group sister to Lepidocolaptes fuscus with a posterior

probability of 100% (Fig. 2.4). The second Bayesian inference of phylogeny yielded a majority-

rule consensus tree depicting the same relationships among subspecies of polytypic

Xiphorhynchus species as the MP and ML trees. However, the posterior probabilities of

occurrence of clades tended to be higher than bootstrap values supporting those same clades in

MP and ML trees (Fig. 2.5). Reflecting the conflicting position of X. obsoletus between MP and

ML trees, the two Bayesian inferences of phylogeny obtained also differed in their placement of

this species. The first Bayesian inference favors the arrangement found by MP analyses, whereas

the second Bayesian inference agrees with ML analyses (Figs. 2.1-2.5). Consistently, in both

Bayesian inferences of phylogeny, the lowest posterior probabilities of occurrence involved

clades containing X. obsoletus or X. erythropygius plus X. triangularis as the sister group to the

well supported X. flavigaster - X. guttatus - X. lachrymosus - X. susurrans clade (Figs. 2.4 and

2.5).

DISCUSSION

Monophyly of Xiphorhynchus and Its Relationship with Other Dendrocolaptidae Genera.- Two

previous studies on dendrocolaptid systematics agreed in placing Xiphorhynchus in a
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Figure 2.4. Majority-rule consensus of 4,000 trees obtained by a Bayesian inference of
phylogeny under a variety of substitution parameters assuming the GTR+G+I model of
molecular evolution. Numbers above branches refer to the posterior probability of occurrence of
clades. Note the monophyly of species restricted to terra-firme forest in lowland Amazonia (taxa
indicated by an asterisk followed by TF) and the polyphyly of várzea specialist species (taxa
indicated by an asterisk followed by V).
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Figure 2.5. Majority-rule consensus of 4,000 trees obtained by a Bayesian inference of
phylogeny under a variety of substitution parameters assuming the GTR+G+I model of
molecular evolution. Numbers above branches refer to the posterior probability of occurrence of
clades. Short branches without numbers had a posterior probability of occurrence of at least 87%
and are not shown here for sake of clarity. Taxa restricted to terra-firme and várzea forests in
lowland Amazonia are indicated by asterisks followed by the codes TF and V, respectively.
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group (Feduccia 1973) or a clade (Raikow 1994) together with the following genera:

Campyloramphus, Dendrexetastes, Dendrocolaptes, Hylexetastes, Lepidocolaptes, and

Xiphocolaptes. These two studies differed only in their placement of the genera Nasica and

Drymornis. Based primarily on osteological characters, Feduccia (1973) considered them as

members of the “strong billed” woodcreeper assemblage, which included all the aforementioned

genera and excluded the remaining, so called “intermediate” dendrocolaptid genera Dendrocincla,

Deconychura, Glyphorynchus, and Sittasomus. Raikow’s (1994) phylogeny was based primarily

on myological characters and placed Nasica and Drymornis as sisters to all remaining “strong

billed” and “intermediate” woodcreeper genera alike. In the present study, I sampled all “strong

billed” genera except Drymornis, and two of the four existing “intermediate” genera as defined by

Feduccia (1973). Phylogeny estimates obtained by the present study support Feduccia’s (1973)

placement of Nasica in the “strong billed” assemblage (Figs. 2.1, 2.2, and 2.4). In addition, the

phylogenetic results presented here provide much better resolution of the non-controversial part

of the “strong billed” clade consisting of Campyloramphus, Dendrexetastes, Dendrocolaptes,

Hylexetastes, Lepidocolaptes, Xiphocolaptes, and Xiphorhynchus than the most complete

phylogenetic hypothesis previously available for the Dendrocolaptidae (Raikow 1994). Within

the “strong billed” clade, phylogenies reconstructed with three alternative criteria (MP, ML, and

Bayesian inference of phylogeny) pointed to a clade grouping species of Campyloramphus,

Lepidocolaptes, and Xiphorhynchus. Statistical support for this relationship was high in MP and

Bayesian analyses but only modest in the ML tree (BP = 56%; Fig. 2.2). Unlike ML bootstrap

analyses, Bayesian inference of phylogeny uses full models of DNA substitution and samples

the entire available dataset to generate alternative tree topologies, thus providing a more robust
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evaluation of the statistical support for the different nodes of a tree. When compared to posterior

probabilities derived from a Bayesian inference of phylogeny, ML bootstrap proportions are

likely to underestimate the probability of clades with inherent high probabilities of occurrence

(Rannala and Yang 1996). Supporting this view, when the ML and the Bayesian majority-rule

consensus trees obtained in this study were compared, despite their nearly identical topologies,

bootstrap proportions for nodes of the ML tree were never higher than posterior probabilities of

clades in the Bayesian tree (Figs. 2.2 and 2.4).

Higher level relationships within the Campyloramphus - Lepidocolaptes - Xiphorhynchus

clade were conflicting and to some extent poorly supported. All phylogeny estimates obtained

suggested a sister relationship between all Campyloramphus and two Lepidocolaptes species.

This relationship received moderate support only in MP analyses and little support in ML and

Bayesian analyses (Figs. 2.1, 2.2, and 2.4). All phylogeny estimates strongly supported the

monophyly of the genus Campyloramphus and the paraphyly of the genus Lepidocolaptes.

According to all trees, Lepidocolaptes fuscus was nested, with high support, within a clade

containing only Xiphorhynchus species (Figs. 2.1, 2.2, and 2.4). These findings agree with two

independent morphological and molecular datasets (Raikow 1994, García-Moreno and Silva

1997). Based on 36 anatomical characters, mostly myological, Raikow (1994) also found

Campyloramphus to be monophyletic (he sampled two of the three species sampled in the

present study plus the Brown-billed Scythebill [C. pusillus]). When Raikow’s (1994) and the

present study are viewed together, the only Campyloramphus species not sampled is the Greater

Scythebill (C. pucherani), supporting the notion that at least 4 of the 5 extant species of

Campyloramphus are monophyletic. Also in agreement with the present study, Raikow (1994)
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found Lepidocolaptes to be paraphyletic, with L. fuscus lying outside a clade containing five

Lepidocolaptes species (two of them sampled by the present study). García-Moreno and Silva

(1997) sequenced fragments of the ND2 and cyt b mtDNA genes for all existing Lepidocolaptes

species (following the taxonomy of Stotz et al. 1996), except the White-striped Woodcreeper (L.

leucogaster); they also found that Lepidocolaptes is monophyletic to the exclusion of L. fuscus,

which was found to be the sister taxon to one of their outgroups, namely Xiphorhynchus spixii.

Raikow’s (1994) and García-Moreno and Silva’s (1997) studies can be regarded as

complementary because together they sampled all species of Lepidocolaptes. Their findings and

those of the present study strongly indicated that the genus Lepidocolaptes is not monophyletic

because Lepidocolaptes fuscus is, in fact, a Xiphorhynchus.

All phylogeny estimates produced by the present study also show the genus

Xiphorhynchus (sensu Peters 1951, Stotz et al. 1996) as paraphyletic. The sibling species pair X.

picus and X. kienerii is never found as the sister group or within the highly supported clade

containing all remaining Xiphorhynchus species plus Lepidocolaptes fuscus, regardless of the tree

building method considered (Figs. 2.1, 2.2, and 2.4). However, the phylogenetic position of X.

picus plus X. kienerii within the Campyloramphus - Lepidocolaptes - Xiphorhynhcus clade was

either conflicting (according to MP analyses; Fig. 2.1) or poorly supported (according to a ML

analysis; Fig. 2.2). Topologies of one of the two most parsimonious trees found by MP and

those of ML and Bayesian consensus trees place X. picus plus X. kienerii as sister to a clade

containing Campyloramphus plus Lepidocolaptes. Only the Bayesian estimate of phylogeny

supported this relationship modestly (Fig. 2.4). The second MP tree (not shown) placed X. picus

plus X. kienerii as the sister group to all members of the Campyloramphus - Lepidocolaptes -
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Xiphorhynchus clade. Although no phylogeny recovered supported the monophyly of all

Xiphorhynchus species, this relationship cannot be totally ruled out, given the low statistical

support for the placement of X. picus and X. kienerii within the Campyloramphus -

Lepidocolaptes - Xiphorhynchus clade. In any event, all phylogenetic hypotheses obtained

strongly indicated that X. picus plus X. kienerii belong to a separate clade not nested within the

genera Campyloramphus, Lepidocolaptes, or Xiphorhynchus. The distinctiveness of X. picus and

X. kienerii was recognized by early taxonomists who grouped these species in a separate genus:

Dendroplex (Cory and Hellmayr 1925, Zimmer 1934a). Without formal analysis, Todd (1948)

transferred kienerii to Xiphorhynchus but kept picus in Dendroplex. Later, Peters (1951) lumped

Dendroplex and Xiphorhynchus because the type of Dendroplex (consisting only of a published

painting) is apparently a Xiphorhynchus, the name which has priority. In accordance with older

taxonomy, phylogeny estimates of the present study supported the grouping of X. picus and X.

kienerii in a separate genus.

Species Limits Within the Xiphorhynchus triangularis / erythropygius Superspecies.- Because

they share a similar overall greenish plumage color, unique among dendrocolaptids, these two

largely allopatric, montane taxa were previously regarded as conspecific (Cory and Hellmayr

1925). Eventually, Xiphorhynchus triangularis and X. erythropygius were recognized as separate

species based primarily on differences in the extent of crown spotting and back streaking

(Wetmore 1972). A recent anatomical phylogeny placed these two species in separate, distantly

related clades (Raikow 1994). The present study however strongly supported the monophyly of

the X. triangularis / erythropygius superspecies (Figs. 2.1, 2.3, and 2.5). Uncorrected sequence

divergence between these two taxa averaged 4.8% (n = 4; Table 2.2), exceeding those observed



44

between undisputed, biological sister species of Xiphorhynchus: p = 3.4 - 4.4% (Table 2.2).

Consistently, sequence divergence between subspecies of X. triangularis and X. erythropygius

was much lower, ranging from 0.3% in X. triangularis to 1.4% in X. erythropygius (Table 2.2).

The level of uncorrected mtDNA sequence divergence observed between X. triangularis and X.

erythropygius was consistent with long term lineage sorting and reproductive isolation, a notion

also supported by the lack of known hybrids between these species (A.O.U. 1998).

Species Limits Within the Xiphorhynchus guttatus Superspecies.- Trans-Andean populations of

X. guttatus were split from their cis-Andean counterparts under the name susurrans based on

song and size differences (Willis 1983), an arrangement followed by the A. O. U. (1998). The

present study supported the distinctiveness of X. susurrans as a basal taxon sister to two cis-

Andean taxa of X. guttatus: X. g. guttatus from eastern Brazil and X. g. polystictus from coastal

northeastern Amazonia (Figs. 2.1, 2.3, 2.5 and Appendix 1). Uncorrected sequence divergence

between X. susurrans and those taxa was 3.5%, thus within the range of values observed between

some undisputed, biological sister species of Xiphorhynchus (3.4 - 4.4%; Table 2.2). However, in

contrast with the traditional view, the major division within the X. guttatus superspecies was not

between cis and trans-Andean populations (susurrans versus remaining taxa), but between the

southern and western Amazonian taxa (dorbignyanus, eytoni, guttatoides, and vicinalis) and the

trans-Andean, coastal Guianan, and eastern Brazilian taxa (susurrans, polystictus, and guttatus;

Figs. 2.1, 2.3, and 2.5). Support for this relationship was high and uncorrected sequence

divergence between these two clades ranged from 4.5 to 5.4%. This divergence was consistent

with species level differences in Xiphorhynchus (Table 2.2). Within these two clades, uncorrected

sequence divergence levels were lower than between clade comparisons (0.37 - 2.4% within the
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southern - western Amazonian clade, and 0.37 - 3.5% within the trans-Andean - Guianan -

eastern Brazilian clade). Comparatively lower levels of uncorrected sequence divergence found

within the southern - western Amazonian clade were consistent with subspecific differentiation

and intergradation, as inferred from plumage characters of specimens collected in contact zones

between the neighboring parapatric taxa dorbignyanus, eytoni, and guttatoides (Zimmer 1934b).

Thus, molecular data supported the traditional treatment of these taxa and vicinalis (Todd 1948)

as conspecifics. The current analysis sampled all cis-Andean subspecies of X. guttatus except X.

g. connectens (Todd 1948), found on the Guianan shield immediately north of the Amazon river.

So far, polystictus appears to be restricted to coastal northeastern Brazilian Amazonia and the

Guyanas, and the southern limit of its distribution and contact zone with connectens, if any,

remain unknown (Peters 1951).

If trans-Andean X. susurrans is recognized as a valid species, then X. guttatus becomes a

paraphyletic species (Figs. 2.1, 2.3, and 2.5). As mentioned before, some phenotypic characters

in addition to the molecular evidence warranted the recognition of X. susurrans (Willis 1983) as a

separate species. Unfortunately, no study so far has compared the variation in phenotypic

characters among all taxa of the X. guttatus superspecies. In a study that provided an

identification key for all cis-Andean taxa of X. guttatus, Pinto (1947) pointed to a close

phenotypic similarity between nominate guttatus and polystictus, thus agreeing with the

molecular data. The present study supported the recognition of at least three major evolutionary

lineages in the X. guttatus superspecies: one including dorbignyanus, eytoni, guttatoides, and

vicinalis, a second including guttatus and polystictus, and a third including trans-Andean

populations. Relatively high levels of sequence divergence and reciprocal monophyly among



46

these three mostly allopatric clades suggest long term reproductive isolation and lack of recent

widespread gene flow among them. Nevertheless, more samples from contact areas, coupled with

analyses of morphological, vocal, and nuclear molecular characters are needed to better assess the

existence or degree of gene flow between the three main lineages of X. guttatus detected in this

study.

Species Limits Within the Xiphorhynchus pardalotus / ocellatus Superspecies.- This study

strongly supported the inclusion of X. pardalotus in a clade containing four subspecies of X.

ocellatus (Figs. 2.1, 2.3, and 2.5), thus contradicting earlier views that included X. pardalotus in

the X. spixii superspecies (Cory and Hellmayr 1925 but see Zimmer 1934b). This study also

indicated that the major division within the X. pardalotus / ocellatus superspecies is not between

the Guianan (i.e. X. pardalotus) and non-Guianan Shield taxa, as implied by current taxonomy,

but instead between Andean foothill (X. o. chunchotambo and X. o brevirostris) and lowland

Amazonian taxa (X. pardalotus, X. o . ocellatus and X. o. weddellii), hence rendering X. ocellatus

paraphyletic. Uncorrected levels of sequence divergence between these two clades ranged from

4.6 to 5.7% and were consistent with species level differences in Xiphorhynchus (Table 2.2).

Sequence divergence between the two Andean foothill taxa (p = 1%) was within the range of

those found between other subspecies of Xiphorhynchus, whereas that found between X. o.

ocellatus and X. o. weddellii  (3.8%) was slightly higher than that between X. o. ocellatus and X.

pardalotus (3.4%), two taxa considered distinct biological species (Cory and Hellmayr 1925,

Zimmer 1934b, Peters 1951).

The four divergent sequence types recovered for the X. pardalotus / ocellatus

superspecies corresponded to taxa also diagnosable by discrete phenotypic characters.
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Xiphorhynchus o. chunchotambo is such a distinctive taxon that it was treated as a separate

species by Cory and Hellmayr (1925), but was subsequently merged with X. ocellatus based on

putative intergradation with X. o. napensis (Zimmer 1934b). This intergradation was inferred

from only two intermediate specimens (which I did not examine personally) collected in

northeastern Peru, where the latter taxon and X. o. chunchotambo approach their ranges (Zimmer

1934b). Large series of specimens housed at the Louisiana State University Museum of Natural

Sciences indicated that X. o. chunchotambo and X. o. napensis replace each other altitudinally in

northeastern Peru, with the latter taxon restricted to the lowlands (pers. obs.); therefore,

opportunities for interbreeding between X. o. chunchotambo and X. o. napensis are probably rare.

Xiphorhynchus o. weddellii is morphologically distinct as well, but closer to nominate ocellatus

(Zimmer 1934b), which also agreed with the molecular data. Finally, X. pardalotus has always

been treated as a distinct species (Cory and Hellmayr 1925, Zimmer 1934b, Peters 1951). In

further agreement with the molecular data, the low level of genetic differentiation found between

X. o. brevirostris and X. o. chunchotambo was matched by their great phenotypic similarity

(Zimmer 1934b). Missing from my sample were only two of the six X. ocellatus subspecies, X. o.

napensis and X. o. perplexus, both found in lowland western Amazonia, and the second described

taxon of X. pardalotus (caurensis). Xiphorhynchus o. perplexus and X. pardalotus caurensis are

not much differentiated from their respective nominate forms (Cory and Hellmayr 1925, Zimmer

1934b, Todd 1948). However, Xiphorhynchus o. napensis is quite distinct and was considered

either conspecific with chunchotambo (Cory and Hellmayr 1925) or with ocellatus (Zimmer

1934b). In addition to the paraphyly of X. ocellatus with respect to a traditionally undisputed

biological species (X. pardalotus), the relatively high levels of sequence divergence found among
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three of its taxa (chunchotambo, ocellatus, and weddellii) suggest long term reproductive isolation.

Nevertheless, further studies with better sampling and nuclear molecular markers are needed to

assess the extent of gene flow between lineages of the X. pardalotus / ocellatus superspecies,

especially in areas where parapatric taxa approach their ranges.

Species Limits Within the Xiphorhynchus spixii / elegans Superspecies.- In contrast with the

traditional classification that considered X. spixii and X. elegans conspecifics (Zimmer 1934b,

Ridgely and Tudor 1994), Haffer (1997b) concluded, based on an analysis of plumage characters

of large series of specimens, that X. spixii is a monotypic species. Except for nominate spixii, all

remaining taxa of this superspecies (buenavistae, elegans, insignis, juruanus, and ornatus) were

grouped under X. elegans because they intergraded with parapatric neighbors along localized

contact zones (Haffer 1997b). This study corroborated Haffer’s (1997b) classification by

revealing two well supported clades: one containing only X. spixii and another with X. s. elegans,

X. s. juruanus, and X. s. ornatus (Figs. 2.1, 2.3, and 2.5). Uncorrected sequence divergence

between members of these two clades ranged from 4 to 4.3% and were consistent with species

level divergences between other sister species pairs of Xiphorhynchus (Table 2.2), and

reproductive isolation as inferred from the lack of phenotypically intermediate specimens in areas

where X. spixii and X. s. elegans come near each other in central Brazil (Haffer 1997b). The range

of uncorrected sequence divergence within the X. elegans clade (p = 1.6 to 1.8%) was within

those observed among other subspecies of Xiphorhynchus (Table 2.2). The two subspecies of X.

spixii missing from the molecular analyses (buenavistae and insiginis) are phenotypically weakly

differentiated from X. s. ornatus (Zimmer 1934b, Haffer 1997b), and their inclusion in the

molecular dataset would likely not change the topologies of the phylogenies obtained.
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The Evolution of Várzea and Terra-firme Habitat Specialization in Xiphorhynchus .- This study

strongly supported the monophyly of Xiphorhynchus species restricted to terra-firme forest in

lowland Amazonia (taxa belonging to the X. pardalotus / ocellatus and X. spixii / elegans

superspecies; Figs. 2.1-2.5). In contrast, the two Xiphorhynchus species restricted to várzea

forest, X. obsoletus and X. kienerii, were found in two distantly related clades, more

appropriately regarded as separate genera (Figs. 2.1-2.5). Xiphorhynchus obsoletus was nested in

a clade containing Xiphorhynchus species found in a wide variety of habitats, from tropical

lowland to pine-oak forests (Table 2.1). Xiphorhynchus kienerii was found in a clade with X.

picus, a species also found in a variety of habitats (Table 2.1). Topologies of the molecular trees

supported the hypothesis that várzea forest specialization in Xiphorhynchus evolved

independently in two separate and highly ecologically diverse lineages.

That várzea and terra-firme specialist species of Xiphorhynchus appeared in separate

clades falsifies the hypothetical sister relationship between várzea and terra-firme species, as

expected if the várzea - terra-firme ecotone played a prominent role in the recent diversification

of the genus Xiphorhynchus. The monophyly of all terra-firme specialist species and the basal

position of X. obsoletus in a separate, ecologically diverse clade, suggest that the várzea - terra-

firme habitat specialization evolved early on in the evolutionary history of Xiphorhynchus. Since

then, the terra-firme clade has experienced a much higher rate of speciation leading to two

superspecies composed of largely allopatric and genetically differentiated lineages. In contrast, as

indicated by long branches separating X. obsoletus and X. kienerii from their closest relatives

(Figs. 2.2 and 2.4), lineages containing várzea species have not diversified nearly as much as

terra-firme ones. These findings support the notion that a significant part of the recent
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diversification within Xiphorhynchus originated by allopatric speciation within the terra-firme

forest habitat in lowland Amazonia.

Taxonomic Recommendations .- In spite of its sampling limitations, the current dataset provides

new insights into the evolution and diversification of species in the genus Xiphorhynchus, which

can be used to generate new hypotheses of classification. When proposing these hypotheses, I

use the General Lineage Concept of Species (de Queiroz 1998) to draw species limits in the X.

guttatus, X. pardalotus / ocellatus, and X. spixii / elegans superspecies. De Queiroz (1998) argued

that most of the alternative species “concepts” in modern biology (including the Phylogenetic and

Biological Species Concepts) are in fact different criteria of the same species concept, the General

Lineage Concept of Species. Since the process of speciation is continuous, several sequencial

events must take place for speciation to be completed; different species criteria determine species

limits by arbitrarily emphasizing different events occurring during the speciation process (de

Queiroz 1998). Critical to the completion of speciation is the achievement of reciprocal

monophyly between sister lineages; the “monophyly criterion” is well suited to establish species

limits in a phylogeny (de Queiroz 1998), which is now finally available for the entire genus

Xiphorhynchus and many of its taxa. By using the monophyly criterion, I split paraphyletic

genera (Lepidocolaptes and Xiphorhynchus) and species (X. guttatus and X. ocellatus), as depicted

in the phylogenies obtained. Based on this rational, I make the following recommendations to the

taxonomy of Xiphorhynchus:

(1)  Exclusion of X. picus and X. kienerii from Xiphorhynchus and their provisional return to

Dendroplex Swainson 1827. The diagnosis of Dendroplex unmistakably refers to X. picus

(Cory and Hellmayr 1925), but its designated type specimen turns out to be the painting of a
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bird presently classified as X. ocellatus (Peters 1951). A separate publication evaluating the

nomenclatural validity of Dendroplex is under way (Aleixo in prep.).

(2)  Removal of the Lesser Woodcreeper (L. fuscus) from the genus Lepidocolaptes and its

inclusion in the genus Xiphorhynchus. In linear classifications, Xiphorhynchus fuscus should

be placed right before the X. pardalotus / ocellatus and X. spixii / elegans superspecies.

(3)  Recognition of three species in the X. guttatus superspecies: (1) Buff-throated Woodcreeper

(X. guttatus), containing nominate guttatus and polystictus as subspecies; (2) Cocoa

Woodcreeper (X. susurrans), containing all trans-Andean subspecies of former X. guttatus (A.

O. U. 1998); and (3) Lafresnaye’s Woodcreeper (X. guttatoides) (Lafresnaye) 1850, available

name with priority, which would include the following Amazonian taxa: dorbignyanus,

eytoni, guttatoides, and vicinalis. The taxon connectens should be kept in X. guttatus until

mtDNA sequences allowing its precise placement in the X. guttatus superspecies become

available.

(4)  Recognition of three species in the X. pardalotus / ocellatus superspecies: (1) Chestnut-

rumped Woodcreeper (X. pardalotus), including nominate pardalotus and caurensis; (2)

Ocellated Woodcreeper (X. ocellatus), including nominate ocellatus, perplexus, and weddellii;

and (3) Tschudi’s Woodcreeper (X. chunchotambo) (Tschudi) 1844, including nominate

chunchotambo and brevirostris. The taxon napensis should be kept in X. ocellatus until

mtDNA data allowing its precise placement in the X. pardalotus / ocellatus superspecies

become available.
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(5)  Recognition of two species in the X. spixii / elegans superspecies: (1) monotypic Spix’s

Woodcreeper (X. spixii); and (2) Elegant Woodcreeper (X. elegans) (Pelzeln) 1868, including

nominate elegans, buenavistae, insignis, juruanus, and ornatus.
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CHAPTER 3. PHYLOGEOGRAPHY AND POPULATION GENETICS OF THE
XIPHORHYNCHUS SPIXII / ELEGANS SUPERSPECIES

The study of Amazonian historical biogeography began with general analyses of species'

distribution patterns (Wallace 1852, Snethlage 1913, Haffer 1969) and eventually evolved into

phylogeographic studies with the use of molecular markers, focused at particular genera and

species (Capparella 1987, Hackett 1993, Patton et al. 1994, Bates 2000, Gascon et al. 1998, Silva

and Patton 1998). These more recent studies addressed specific predictions of some hypotheses

proposed to explain the diversification of the Amazonian biota, sometimes reaching contradictory

conclusions regarding their validity (e.g., Capparella 1987 versus Patton et al. 1994). However,

the main contribution of phylogeographic studies was to point toward alternative hypotheses of

diversification, not discussed before in the context of Amazonian biogeography (see Silva and

Patton 1998), and to show that species with different ecologies and life-history attributes can

differ in their response to historical events promoting speciation (Gascon et al. 1996, Lougheed et

al. 1999, Matocq et al. 2000). Thus, it has become clear that the validity and generality of

hypotheses concerning historical diversification proposed for Amazonia can only be properly

evaluated with the accumulation of phylogeographic studies on several lineages of organisms

(Bates et al. 1998, Moritz et al. 2000, Bates in press).

The Xiphorhynchus spixii / elegans (Aves: Dendrocolaptidae) superspecies is useful for

phylogeographic studies of Amazonian organisms for the following reasons: (1) its distribution

encompasses the entire Amazon basin, except the Guianan shield (Fig. 3.1); (2) the ranges of its

taxa are usually bounded by major Amazonian tributaries, suggesting a strong response to rivers
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Figure 3.1. Distribution of taxa of the Xiphorhynchus spixii / elegans superspecies. Names of
areas of endemism (sensu Cracraft 1985) are shown in bold letters. Names of subspecies of X.
elegans are shown in italics inside areas of endemism. Populations of X. e. elegans found on the
western bank of the Madeira river belong to the Inambari area of endemism
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as barriers to dispersal, a pattern also shown by many other lineages of Amazonian vertebrates

(Fig. 3.1; Haffer 1978), and (3) its taxa are fairly abundant, allowing the acquisition of large

genetic samples. Once regarded as a single polytypic species, two biological species have been

recognized more recently in the X. spixii / elegans superspecies (Haffer 1997b, Chapter 2): X.

spixii (monotypic) and X. elegans (with four recognized subspecies). Xiphorhynchus spixii is

endemic to the Belém  and Pará areas of endemism on the eastern portion of the Brazilian shield

(Fig. 3.1); X. e. elegans occurs in the Rondônia area of endemism, on the western part of the

Brazillian shield, also reaching the easternmost part of the Inambari area of endemism, across the

lower portion of the Madeira river; X. e. juruanus is found on the Inambari area of endemism in

western Amazonia; X. e. ornatus is distributed in the Napo area of endemism; and X. e. insiginis

occurs along the eastern base of the Andes (Fig. 3.1; Haffer 1997b).

Here, I present phylogeographic and population genetics analyses of the Xiphorhynchus

spixii / elegans superspecies to address predictions of the riverine barrier and basal trichotomy

hypotheses (see Chapter 1). Under the riverine barrier hypothesis, two main predictions can be

made regarding the genetic differentiation of the X. spixii / elegans superspecies: (1) main

Amazonian rivers separating populations of the X. spixii / elegans superspecies should act as

areas of primary differentiation rather than secondary contact between lineages that diversified

allopatrically (Moritz et al. 2000); and (2) populations inhabiting opposite banks of adjacent

major Amazonian interfluvia should be more differentiated than populations found within the

same interfluvia, even if separated by a greater distance than those populations separated by

rivers.
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When applied to the diversification of the X. spixii / elegans superspecies, the basal

trichotomy hypothesis predicts that lineages found on the Brazilian shield (X. spixii and X. e.

elegans) ought to derive from the sister group of those lineages found in western Amazonia,

closer to the eastern slope of the Andes (X. e. juruanus, X. e. insiginis, and X. e. ornatus).

Accordingly, ancestral populations of this superspecies would be found on the Brazilian shield

and along the eastern base of the Andes, whereas more recently derived populations would be

found in the western part of the Amazonian lowlands (Bates in press). If this is correct, then

phylogeographies should have X. spixii, X. e. elegans, and X. e. insiginis as more basal taxa,

whereas X. e. juruanus and X. e. ornatus would be the most recently derived taxa. In a population

genetics framework, because of their older age, populations of X. spixii, X. e. elegans, and X. e.

insiginis should be each in a mutation / drift equilibrium, show a multi-modal pattern of pairwise

nucleotide differences among its individuals (mismatch distribution), have higher nucleotide

diversity indices, and have most of their genetic diversity partitioned among, instead of within

populations (Wright 1969, Zink 1997).

METHODS

Specimens. - I sequenced a total of 80 individuals of the X. spixii / elegans superspecies collected

throughout Amazonia and the eastern Andean foothills (see Appendix 2 for collecting localities,

populations sample sizes, and voucher information). Of these, 21 are specimens of X. spixii, and

59 are specimens of all valid subspecies of X. elegans (X. e. elegans, X. e. insiginis, X. e. juruanus,

and X. e. ornatus; as pointed out by Haffer [1997b], X. e. buenavistae is barely distinguishable

from X. e. ornatus and is thus better synonymized with it). In the phylogenetic analyses, I used
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sequences of Xiphorhynchus fuscus and Xiphorhynchus ocellatus as outgroups because these two

species are found in the same clade as the X. spixii / elegans superspecies according to a higher-

level phylogeny estimated for the genus Xiphorhynchus (see Chapter 2).

DNA Sequencing. - Total genomic DNA was extracted from raw frozen tissue and dry skin

samples of recently collected specimens (15 years old or younger) using a Qiagen tissue

extraction kit or a standard phenol/chloroform method (Hillis et al. 1990). I took the following

measures to ensure that ancient DNA extracted out of dry skin samples would not be

contaminated by DNA from frozen tissue samples: (1) dry skin samples were extracted in a

different building than raw tissues; (2) separate Qiagen extraction kits and other disposable lab

supplies were used to perform dry skin and raw tissue extractions, and (3) dry skin extractions

were always performed with a negative controls, which never showed signs of DNA

contamination when run on an electrophoresis agarose gel. I amplified most of the mitochondrial

gene ctytochrome b (1,005 bp) with the following primers: L14990 (Kocher et al. 1989), L15389

(Hackett 1996), H15710 (Helm-Bychowski and Cracraft 1993), HXIPH

(CATTCTGGTTTGATGTGGGG; designed specifically for this project), L15505

(CTAACCTTCCTACACGAAACC; designed specifically for this project), L15656 (Helm-

Bychowski and Cracraft 1993), and H16065 (Hackett 1996). All primer numbers refer to the 3’

base of the published chicken mtDNA sequence (Desjardins and Morais 1990). Fragments were

PCR amplified using standard conditions available upon request: denaturation at 94°C, annealing

between 50°C and 57°C, and extension at 72°C in a Hybaid OMN-E thermal cycler. A small

aliquot of each amplification was electrophoresed on an agarose gel to check for the correct
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fragment size and to ensure that only a single amplification product was obtained. Amplification

products were cleaned with a Qiagen PCR purification kit and cycle-sequenced using a Big Dye

Terminator kit (Perkin Elmer, Norwalk, Connecticut), and all amplification primers listed above.

Cycle sequencing reactions were NH4OAC precipitated, dried, resuspended in a formamide

EDTA, and run on an ABI 377 Automated DNA Sequencer. I aligned and reconciled sequences

from both strands using Sequencher 3.1.1 (Genecodes, Madison, Wisconsin). The following

measures outlined by Sorenson and Quinn (1998) and Bates et al. (1999) were taken to ensure

that the DNA fragments amplified were accurate and of mitochondrial origin (not pseudogenes):

(1) both DNA strands were sequenced; (2) sequences were aligned with the chicken complete

mtDNA sequence, and inspected for insertions, deletions, and stop codons that would result in a

nonfunctional protein; and (3) sequences were expected to exhibit high transition to transversion

substitution ratios characteristic of mitochondrial, not nuclear substitution patterns. I could not

detect any evidence of pseudogenes in the sequences used for this study.

Phylogenetic Analysis. – A maximum parsimony heuristic search (referred to as MP throughout

this paper) was conducted on all unique haplotypes and outgroups with PAUP* 4.0b10

(Swofford 2002). The MP analysis was based on unweighted sequence data. I used 100

nonparametric bootstrap replications (referred to as BP throughout the paper) to evaluate

confidence levels of nodes for the phylogeny obtained with MP (Felsenstein 1985). Only one

random addition-sequence replicate was performed for each bootstrap replicate. I used the

likelihood ratio test as implemented in MODELTEST (Posada and Crandall 1998) to select the

best and simplest model of molecular evolution fitting my dataset, which was then used in a

Bayesian inference of phylogeny with MrBayes software, version 2.01 (Huelsenbeck 2001). I
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ran MrBayes 2.01 with the following specifications: (1) assuming a general time reversible model

of nucleotide substitution with estimated base frequencies and site-specific rates for first, second,

and third codon positions; and (2) running the Markov chain for 2,000,000 generations, sampling

1 tree every 1,000 generations. Following recommendations outlined by Huelsenbeck and Hall

(2001), I discarded trees obtained before the Markov chain reached convergent and stable

likelihood values. I used PAUP* 4.0b10 to compute a majority-rule consensus tree of the

sampled trees. The proportion of times a given clade was sampled equal its posterior probability

of occurrence. Only unique haplotypes were included in the Bayesian inference of phylogeny. I

also used the likelihood ratio test to evaluate whether ingroup and outgroup cytochrome b

sequences were evolving in a clock-like manner. To this end, scores of two maximum likelihood

heuristic searches conducted in PAUP* 4.0b10 (under the model of nucleotide substitution

selected by MODELTEST) were contrasted: one without enforcing a molecular clock and another

assuming a clock-like rate of nucleotide substitution.

Population Genetics Analyses. – As selected by MODELTEST, a Tamura and Nei model

(Tamura and Nei 1993) with a gamma shape parameter (α = 0.15) was used to estimate genetic

distances among unique haplotypes. Haplotype diversity (h), nucleotide diversity (π) (Nei 1987,

equations 8.5 and 10.5, respectively), and Tajima’s (1989) D test for departure of neutrality were

calculated for populations of each clade of the X. spixii / elegans and Amazonian area of

endemism using the software Arlequin 2.000 (Schneider et al. 2000). Tajima’s D was also

computed for all unique haplotypes recovered for both X. spixii and X. elegans and outgroups.

An analysis of molecular variance (AMOVA; Excoffier et al. 1992) for all clades and areas of
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endemism was performed using Arlequin 2.000 (Schneider et al. 2000). AMOVA uses haplotype

frequencies and the number of mutations between them to test the significance of the variance

components associated with up to three hierarchical levels of genetic structure: within

populations, among populations between groups, and among groups. Another AMOVA was

performed for populations of individual clades of the X. spixii / elegans superspecies separated

by the following Amazon river tributaries: Xingú, Madeira, Purús , Jurua, and Ucayali. Pairwise

mismatch distributions (Rogers and Harpending 1992) and parameters of Rogers’ (1995) model

of sudden population expansion also were calculated for all clades and areas of endemism using

Arlequin 2.000 (Schneider et al. 2000). To further test the “barrier-effect” detected for the Xingú

river, I assessed the correlation between straight-line geographic distances and Fst values among

populations of X. spixii using Mantel’s (1967) test in Arlequin 2.000 (Schneider et al. 2000).

RESULTS

Description of mtDNA Sequences. – Cytochrome b sequences recovered were aligned

unambiguously and showed expected codon biases and an overall deficit of guanines as reported

for other avian cytochrome b gene sequences (Moore and DeFilippis 1997). A total of 7 and 41

unique haplotypes was recovered for X. spixii and X. elegans, respectively. These haplotypes

varied in length from 940 to 1,005 bp, spanning positions 15030 to 16035 of the cytochrome b

chicken sequence (Desjardins and Morais 1990). Nucleotide substitutions were observed at 161

sites (19%), 87 of which were phylogenetically informative. Tamura and Nei corrected distances

(with a gamma shape parameter of α = 0.15) among haplotypes ranged from 0.1% (between two



62

X. e. juruanus haplotypes) to 15% (between X. fuscus and X. elegans); the average distance

between X. spixii / elegans haplotypes and their nearest common ancestor (X. ocellatus) was

12.4%. The average Tamura and Nei (α = 0.15) corrected distance between X. spixii and X.

elegans haplotypes was 7%, whereas that among haplotypes belonging to subspecies of X.

elegans ranged from 1.6% (between X. e. elegans and X. e. juruanus / insiginis, and between X. e.

juruanus and X. e. ornatus) to 1.9% (between X. e. elegans and X. e. ornatus). The result of a

Tajima’s test applied to all 48 unique haplotypes of the X. spixii / elegans and sequences of two

outgroups (X. fuscus and X. ocellatus) showed no significant departure from neutrality (D = -

1.25, P > 0.10). Likewise, the hypothesis of a clocklike rate of evolution for all cytochrome b

sequences recovered for the X. spixii / elegans and outgroups could not be rejected (TrN+G[clock],

lnL = -2655.1323, χ2
[48] = 25.10795, P > 0.99).

MP Analysis. – An equally weighted MP analysis of the 48 unique haplotypes of the X. spixii /

elegans superspecies and two outgroups (X. fuscus and X. ocellatus) resulted in 108 most

parsimonious trees (length 224; CI=0.75; RI=0.9). Figure 3.2a shows a 50% majority rule

consensus of these 108 most parsimonious trees and bootstrap confidence values for its nodes. In

the MP tree, the monophyly of the X. spixii / elegans superspecies was highly supported (BP =

100%), thus agreeing with a more extensive molecular dataset presented in chapter 2. Four main

clades with various degrees of BP support can be recognized in the X. spixii / elegans

superspecies according to the MP phylogeny: (1) X. spixii (BP = 100%); (2) X. elegans elegans

(BP = 52%); (3) X. e. ornatus (BP = 100), and (4) X. e. juruanus / insiginis (BP = 78%).

Resolution within the X. spixii clade was high, with the recognition of two well supported clades:
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Figure 3.2. Map with location sampled and phylogenies estimated for 48 unique haplotypes
recovered for the Xiphorhynchus spixii / elegans superspecies. Numbers at the tip of branches
refer to localities (depicted inside circles on the map) where haplotypes were sampled. (A)
Majority-rule consensus of 108 most parsimonious trees (length 224; CI=0.75; RI=0.9) obtained
with unweighted sequence data. Numbers above branches refer to bootstrap support based on
100 replicates. Branches without numbers received less than 50% bootstrap support. (B)
Majority-rule consensus of 1,800 trees obtained by a Bayesian inference of phylogeny under a
variety of substitution parameters assuming the GTR model of molecular evolution with distinct
rates for variable sites for first, second, and third codon positions. Numbers above branches refer
to posterior probability of occurrence of clades. Dashed short branches also had a 100%
posterior probability of occurrence
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one occurring east of the Xingú river (BP = 87%), and another found west of the same river (BP

= 94%). Resolution within the X. elegans clade was poorer: BP values for the basal position of X.

e. elegans, and a sister relationship between X. e. juruanus / insiginis and X. e. ornatus were

under 50% (Fig. 3.2a).

 Bayesian Inference of Phylogeny. – The phylogeny estimated under the Bayesian approach was

very similar to the MP consensus tree discussed above, with high posterior probabilities of

occurrence supporting the monophyly of the X. spixii / elegans superspecies (100%), the

reciprocal monophyly of X. spixii and X. elegans (100%), and the existence of four major clades

in the X. spixii / elegans superspecies: (1) X. spixii (100%); (2) X. elegans elegans (probability of

occurrence for the entire clade not significant, but 100% for each of the three recovered

subclades); (3) X. e. ornatus (100%), and (4) X. e. juruanus / insiginis (100%). As in the MP

consensus tree, higher-level relationships within the X. elegans clade were poorly supported,

with several short internodes receiving very low posterior probabilities of occurrence (Fig. 3.2b).

Area Relationships. – Relationships among taxa within different areas of endemism recognized

for Amazonia (Figs. 3.2a and 3.2b) inferred from the MP and Bayesian estimates of phylogeny

for the X. spixii / elegans superspecies were essentially the same. The main split between X. spixii

and X. elegans separates the Belém and Pará from the Rondônia, Inambari, and Napo areas of

endemism. The Belém and Pará areas form a composite area of endemism (Belém  / Pará), sharing

most haplotypes recovered for X. spixii (Figs. 3.1 and 3.2). The two X. spixii clades observed did

not exclude each other at different areas of endemism, but instead, across the Xingú river (Fig.

3.2). The Inambari area of endemism is inhabited by two distinct, non-sister, clades of the X.

spixii / elegans superspecies: X. e. juruanus and X. e. elegans, the latter restricted to its
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westernmost part (Figs. 3.1 and 3.2). The Napo area of endemism is entirely occupied by X. e.

ornatus, a highly supported clade of the X. spixii / elegans superspecies according to MP and

Bayesian phylogenies (Fig. 3.2). However, higher level relationships among taxa within the

Rondônia, Inambari, and Napo areas of endemism were conflicting and statistically poorly

supported according to the MP and Bayesian estimates of phylogeny. Contrary to a prediction

of the basal trichotomy hypothesis, the two major clades of the X. spixii / elegans superspecies

inhabiting the Brazilian shield are not sisters: populations of X. e. elegans from the western part

of the Brazilian shield are closer to populations found in the western Amazonian lowlands than

to populations of X. spixii found further to the east on the Brazilian shield.

Population Genetics Analyses. – Indices of haplotype diversity were high and similar among

clades of X. elegans, but lower in X. spixii (Table 3.1). Populations of X. spixii and X. e. elegans

occurring on the Brazilian shield (i.e., in the Belém  / Pará and Rondônia areas of endemism,

respectively) had higher nucleotide diversity indices than those populations occurring in the

Inambari and Napo areas of endemism (X. e. juruanus / X. insiginis and X. e. ornatus,

respectively) in western Amazonia. Results of Tajima’s D tests indicate that populations of the

X. spixii / elegans superspecies found on the Brazilian shield were in mutation / drift equilibrium,

whereas those found in western Amazonia showed a statistically significant departure from

neutrality, with strongly negative values consistent with a demographic expansion or population

bottleneck (Rand 1996; Table 3.1). Analyses of Molecular Variance (AMOVA) showed that

most genetic variation detected in populations of the X. spixii / elegans superspecies of the

Brazilian shield (Belém  / Pará and Rondônia areas of endemism) was partitioned geographically,

among different populations (Table 3.1).
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TABLE 3.1 - Geographically distributed genetic variation among members of the X. spixii / elegans superspecies in Amazonia. Includes
number of individuals and populations sampled, haplotype diversity (h), nucleotide diversity (π), results of Tajima's (1989) D test,
and results from an analysis of molecular variance (AMOVA).

Area of endemism
(Taxon)

No. Individuals
(Populations
sampled) a

Haplotype
diversity

Nucleotide
diversity

Tajima's D test
b

Variation
among

populations
(%)c

Variation
within

populations
(%)

Belém  / Pará
(X. spixii)

21
(1 - 7)

0.79±0.06 5.2±2.9 •10 -3 0.48 N.S 85.5 ** 14.4

Rondônia
(X. elegans elegans) d

17
(8 - 10)

0.93±0.04 8.9±4.8•10 –3 0.14 N.S. 57.1 ** 42.8

Inambari
(X. e. juruanus and X.
e. insiginis)

24
(12 – 18)

0.89±0.05 2.7±1.7•10 –3 - 2.05 ** 6.7 * 93.2

Napo
(X. e. ornatus)

13
(19 – 22)

0.96±0.04 3.1±1.9•10 –3 - 1.73 * 13.7 * 86.3

a See Fig. 3.2 for geographic location of populations.
b Tajima's D test (1989); N.S., non-significant departure from neutrality (both P > 0.60); * significant departure from neutrality at P =
0.03; ** significant departure from neutrality at P = 0.01.
c * P < 0.01; ** P < 0.001.
d Excludes population 11, located west of the Madeira river in the westernmost part of the Inambari area of endemism.
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In contrast, most genetic variation in populations of the western Amazonian lowlands

(Napo and Inambari areas of endemism) was partitioned within populations (Table 3.1). Another

AMOVA (Table 3.2) showed that among five main southern bank Amazon river tributaries

separating the ranges of monophyletic populations of the X. spixii / elegans superspecies, only

one (the Xingú river, located on the Brazilian shield) separated populations of X. spixii with most

of their genetic variation partitioned between opposite river banks. Distance alone cannot explain

this strong “river-effect” because correlation between straight-line geographic distances and

pairwise Fst values among populations of X. spixii was positive but not statistically significant (r

= 0.88; Mantel’s test P = 0.21). Monophyletic populations of X. elegans separated by

Amazonian tributaries located in western Amazonia (Madeira, Purús, Juruá, and Ucayali) had

most of their genetic variation partitioned among populations located on the same river bank or

within populations (Table 3.2), thus independently of the presence of the river. Nucleotide

mismatch distributions for clades of the X. spixii / elegans superspecies occurring on the Brazilian

shield were bimodal (X. spixii) or multimodal (X. e. elegans), but unimodal for clades occurring in

western Amazonia (X. e. juruanus / insiginis and X. e. ornatus Figs. 3.3 and 3.4). Assuming a

mitochondrial clocklike substitution rate of 2% per million years (Klicka and Zink 1997),

unimodal mismatch distributions for X. e. juruanus / insiginis and X. e. ornatus were consistent

with a recent population expansion, probably followed by a bottleneck, that took place between

6,000 and 60,000 years BP (Rogers 1995).



69

TABLE 3.2 – Results from an analysis of molecular variance (AMOVA) among monophyletic populations of the Xiphorhynchus spixii
/ elegans superspecies separated by five main southern bank Amazon river tributaries.

Taxon No. individuals
(Populations) a

River Among
populations

from opposite
river banks

(%)

Among
populations

from the
same river
bank (%)b

Within
populations

(%)b

X. spixii 21
(1 – 7)

Xingú 87.6      1.5 **     10.8 **

X. elegans elegans 22
(8 – 11)

Madeira 20.1       48.6 **     31.2 **

X. e. juruanus 17
(12 – 16)

Purús and Juruá 2.9 - 0.5 97.6

X. e. juruanus and X.
e. insiginis

18
(14 – 18)

Ucayali 13.6 - 2.5 88.9

a See Fig. 3.2 for geographic location of populations.
b * P < 0.001.
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Figure 3.3. Pairwise nucleotide mismatch distributions for the X. spixii (A) and X. elegans elegans
(B) clades of the Xiphorhynchus spixii / elegans superspecies found on the Brazilian shield.
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Figure 3.4. Pairwise nucleotide mismatch distributions for the X. elegans juruanus / insiginis (A)
and X. elegans ornatus (B) clades of the Xiphorhynchus spixii / elegans superspecies found in the
western lowlands of Amazonia and eastern slope of the Andes.
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DISCUSSION

Phylogenetic Relationships. – MP and Bayesian estimates of phylogeny for the X. spixii /

elegans superspecies were in general well supported statistically (Fig. 3.2); the only exception

was the set of higher-level relationships among the three clades recovered for X. elegans: X. e.

elegans, X. e. juruanus / insiginis, and X. e. ornatus. Although MP placed X. e. elegans as basal in

this clade, the Bayesian estimate of phylogeny placed X. e. ornatus in this same position,

changing therefore the set of sister relationships in this three taxon clade. In the absence of a good

statistical support for either alternative topology, independent evidence from the data shown

here might provide better clues as to which alternative phylogeny is better supported.

Three of four clades of the X. spixii / elegans superspecies recovered by the MP and

Bayesian phylogenies correspond to phenotypically diagnosable OTUs, formally recognized as

distinct taxa (Haffer 1997b). The only discrepancy between phenotypic and genotypic data

pertains to the position of X. e. insiginis, which is phenotypically very similar to X. e. ornatus,

but genetically indistinguishable from X. e. juruanus (Fig. 3.2). This pattern can be explained by

extensive gene flow between the X. e. juruanus and X. e. ornatus clades across the upper

Maranon and Ucayali rivers, as documented by a clinal variation in some plumage characters of

specimens collected in these areas (Zimmer 1934b, Haffer 1997b). In spite of several documented

cases of extensive hybridization between non-sister lineages (Omland et al. 2000), I would

tentatively interpret this extensive intergradation in genetic and plumage characters, added to an

extreme similarity in song types (pers. obs.), as evidences of a sister relationship between the X.

e. juruanus / insiginis and X. e. ornatus clades, therefore supporting the topology recovered by

MP.
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The Riverine Barrier Hypothesis. - In a phylogenetic and population genetics framework, the

three main predictions of the riverine-barrier hypothesis are: (1) sister intraspecific clades and

species will occur across major rivers rather than within major Amazonian interfluves (Moritz et

al. 2000); (2) phylogeographic analyses should allow the distinction between primary divergence

across rivers (predicted by the riverine barrier hypothesis) from secondary contact along rivers

between non-sister lineages (Moritz et al. 2000); and (3) within a river basin, genetic similarity

between populations separated by a river should be higher in the headwaters (where the river is

narrower) than in its lower part (Gascon et al. 2000).

Predictions 1 and 2 hold only for two out of five southern bank Amazonian tributaries

separating populations of the X. spixii / elegans superspecies: the Xingú and Tapajós rivers, both

with their headwaters and most of their courses on the Brazilian shield, and for the upper

Amazon river in western Amazonia (Figs. 3.1 and 3.2). The main split in the X. spixii / elegans

superspecies (between the sister clades X. spixii and X. elegans, now regarded as separate

biological species), coincides completely with the Tapajós  river, making this river therefore the

primary barrier causing an early divergence in the X. spixii / elegans superspecies (Figs. 3.1 and

3.2). Likewise, the Xingú river, farther to the east, coincides with the main split between the two

sister clades of X. spixii (Fig. 3.2). Although a more thorough sampling of populations of X. spixii

found west of the Xingú is necessary before strong conclusions can be drawn, two lines of

evidence suggest that this main split across the Xingú is real and not a sampling artifact: (1) the

lack of a significant correlation between straight-line geographic distances and pairwise Fst values

among populations of X. spixii, and (2) the strong bimodality of the mismatch distribution among

all haplotypes recovered for X. spixii, which is consistent with long-term isolation and lack of
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recent gene flow between those two clades (Fig. 3.3a; Marjoram and Donnelly 1994). Also

consistent with predictions of the river hypothesis is the replacement of the sister clades X. e.

juruanus / insiginis and X. e. ornatus across the upper Amazon river in western Brazil and

northeastern Peru (Fig. 3.2). However, as discussed earlier, gene flow between the X. e. juruanus /

insiginis and X. e. ornatus clades occurs farther west, across the upper reaches of the Maranon

river; therefore, the “barrier effect” of the upper Amazon river is local and ultimately insufficient

to promote a complete isolation between those two lineages. On the other hand, no evidence of

gene flow between sister clades of the X. spixii / elegans superspecies was found even at the

headwaters of the Xingú and Tapajós rivers, where the width and associated “barrier effect” of

these rivers are presumably smaller (Haffer 1992a).

Conversely, all predictions of the riverine barrier hypothesis outlined above were not

fulfilled when the following white-water southern bank Amazonian tributaries are concerned:

Madeira, Purús , Juruá, and Ucayali (Fig. 3.1). The Madeira river is by far the largest tributary of

the Amazon river, accounting for many distributional limits in several lineages of vertebrates

(Ayres and Clutton-Brock 1992, Haffer 1992a). According to predictions of the riverine barrier

hypothesis, haplotypes found on the western bank of the Madeira should be closer to

haplotypes found farther west than to haplotypes from the opposite (eastern) bank of the river.

As the phylogenies recovered clearly indicated, this is not the case: haplotypes from the western

bank of the lower Madeira group with haplotypes recovered across the river (X. e. elegans clade),

rather than with haplotypes found in the same interfluvium (X. juruanus / insiginis clade), a

pattern concordant with the phenotypic similarity between specimens collected in western bank

of the lower Madeira and specimens of X. e. elegans found in the Madeira / Tapajós  interfluvium
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(Haffer 1997b, pers. obs). This set of relationships further falsifies the riverine barrier

hypothesis because the “crossing” of the Madeira by X. e. elegans haplotypes took place in its

lower course rather than its headwaters, where the “barrier effect” is expected to be weaker

(Gascon et al. 2000). Farther upriver, the Madeira separates the X. e. elegans and X. e. juruanus

clades, which, as discussed above, are not regarded as sisters. Finally, an AMOVA showed that

most of the genetic variation found in populations in the X. e. elegans clade is not partitioned

across the Madeira, but instead among populations from the Madeira / Tapajós  interfluvium

(Fig. 3.2 and Table 3.2).

Similarly, the Purús, Juruá, and Ucayali rivers do not separate sister lineages of the X. e.

juruanus / elegans clade (Fig. 3.2), and two AMOVAs indicate that most genetic variation in this

clade is partitioned within populations and is therefore independent from the locations of those

three main Amazonian tributaries (Tables 3.1 and 3.2). Several phylogeographic studies on

amphibians, reptiles, and mammals designed to test the riverine barrier hypothesis along the

Juruá river overwhelmingly concluded that the Juruá does not represent a significant barrier

promoting differentiation among lineages inhabiting its valley (Gascon et al. 1996, Peres et al.

1997, Silva and Patton 1998, Lougheed et al. 1999, Gascon et al. 2000). This pattern is not

unexpected given the extensive meandering of the Juruá, and the small number of distinct avian

taxa whose ranges abut along this river (Capparella 1987, Haffer 1997a). The same poor “barrier

effect” detected along the Juruá was suggested to be extended to other meandering white-water

Amazonian tributaries originating in the Andean slopes of western Amazonia (Gascon et al.

2000), a conclusion well supported by the present study.
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When the historical diversification of the X. spixii / elegans superspecies is contrasted

with predictions derived from the riverine barrier hypothesis, a dichotomous pattern emerges:

Amazonian tributaries located on the Brazilian shield represent current and historical barriers

restraining or suppressing gene flow between sister lineages, whereas white-water tributaries in

the western Amazonian lowlands do not seem to play such a role. This lack of a “river-effect” in

the western part of the Amazon, when compared to its central and eastern parts, is probably

explained by the younger age of the western Amazonian lowlands. Although the Brazilian and

Guianan shields have been geologically stable for the last 30-50 million years (Irion et al. 1995),

the southwestern part of Amazonia began to take its current shape only in the last 2.5 million

years or so (Late Pliocene), when the last cycle of Cenozoic fluvio-lacustrine deposition ended,

and when the Amazon river system began to develop as a transcontinental drainage system

(Hoorn et al. 1995, Campbell et al. 2001). Therefore, western Amazonian rivers are younger and

less stable than rivers located on the Brazilian shield, and they experience frequent lateral channel

migration responsible for across river transfer of large pieces of land (Salo et al. 1986).

Furthermore, the impact of recurrent sea level changes on the Amazonian biota as recently as the

Last Glacial Maximum (LGM, about 20,000 years BP; Irion et al. 2002) disproportionately

influenced the poorly drained western lowlands compared to the higher Brazilian shield, where

the main effect may have been the enlargement of the width of its main rivers such as the

Tocantins, Xingú and Tapajós . The pattern of diversification revealed by the X. spixii / elegans

superspecies leads to the conclusion that the most important variable responsible for the

effectiveness of a river as a barrier to gene flow is not its width, but instead the geological history

of its location (Ayres and Clutton-Brock 1992, Colwell 2000, Gascon et al. 2000).
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The Basal Trichotomy Hypothesis. – The following predictions can be derived from the basal

trichotomy hypothesis when applied to the diversification of the X. spixii / elegans superspecies

(Bates in press; Chapter 1): (1) lineages found on the Brazilian shield (X. spixii and X. e. elegans)

ought to be sisters to those lineages found in western Amazonia, closer to the eastern slope of the

Andes (X. e. juruanus, X. e. insiginis, and X. e. ornatus); (2) phylogenetic estimates should have

X. spixii, X. e. elegans, and X. e. insiginis as the more basal taxa, whereas X. e. juruanus and X. e.

ornatus would be the most recently derived taxa; and (3) populations of X. spixii, X. e. elegans,

and X. e. insiginis should be in mutation/drift equilibrium, show a multi-modal pattern of pairwise

nucleotide differences among individuals (mismatch distribution), have higher nucleotide diversity

indices, and have most genetic diversity partitioned geographically among populations.

Phylogenetic and population genetics analyses of the Xiphorhynchus spixii / elegans

superspecies partially support some of the predictions outlined above. The first prediction is

falsified because taxa found on the Brazilian shield are not monophyletic (Fig. 3.2). Instead, taxa

endemic to the western Amazonian lowlands and eastern slope of the Andes (X. e. juruanus, X. e.

ornatus, and X. e. insiginis) are derived from a taxon endemic to the western portion of the

Brazilian shield corresponding to the Rondônia area of endemism (X. e. elegans). The second

prediction is just partially fulfilled, because taxa endemic to the Brazilian shield (X. spixii and X.

e. elegans) do occupy basal positions in their respective clades, but the taxon endemic to the

eastern slope of the Andes (X. e. insiginis) does not: it is nested in a distal clade of X. elegans,

together with X. e. juruanus. Thus, the eastern slope of the Andes cannot be regarded as an area

of origin or primary differentiation for Xiphorhynchus spixii / elegans superspecies, as expected

by the basal trichotomy hypothesis. This observation indicates either that: (1) the eastern slope
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of the Andes never functioned as an “island” where isolated populations diversified, or (2) that

different avian lineages diversified in different areas postulated to have escaped extensive Tertiary

and Quaternary flooding (Guianan shield, Brazilian shield, and eastern slope of the Andes). Only

future studies focused at other avian lineages will allow the distinction between these two

alternative scenarios.

In the case of the Xiphorhynchus spixii / elegans superspecies, a combination of

phylogenetic and population genetic analyses is consistent with an origin and early diversification

on the Brazilian shield and a later colonization of the western Amazonian lowlands and eastern

slope of the Andes (Figs. 3.2, 3.3, and 3.4; Table 3.1). Based on a mitochondrial clocklike

substitution rate of 2% per million years (Klicka and Zink 1997), and using the correction for

within phylogroup variation suggested by Avise and Walker (1998), the split between the

western Brazilian shield taxon (X. e. elegans) and the western lowland Amazonian/Andean clade

(X. e. juruanus / insiginis and X. e. ornatus) was completed about 500,000 years BP; therefore,

colonization of the western Amazonian lowlands may have started earlier, sometime during the

middle Pleistocene. Since then, populations of the X. e. juruanus / insiginis and X. e. ornatus

clades expanded quite rapidly into western Amazonia and eastern slope of the Andes, probably

after experiencing several population bottlenecks, which led to unimodal nucleotide mismatch

distributions and a lack of phylogeographic structure (Table 3.1; Fig. 3.4). Sea level changes

throughout the Quaternary affected western Amazonia by creating large floodplains, alternated

by periods of extensive floodplain erosion (Irion et al. 1995). This dynamic scenario may have

led to several population bottlenecks followed by rapid range expansions in the X. e. juruanus /
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insiginis and X. e. ornatus clades, because these taxa tend to favor unflooded terra-firme forest as

their main habitat type (Ridgely and Tudor 1994).

In contrast, the high degree of population structure and nucleotide diversity detected for

the X. e. elegans and X. spixii clades on the Brazilian shield are consistent with long-term

population stability, probably attained in a stable environment (Table 3.1). The split between the

X. elegans and X. spixii clades was probably completed by the late Pliocene (ca. 3 million years

BP), and could have been promoted by an extensive embayment of the Tapajós river in a period

of high sea levels during the Pliocene (Haq et al. 1987, Marroig and Cerqueira 1997). Although

populations of X. e. elegans on the western part of the Brazilian shield showed no signs of having

experienced a recent population bottleneck (Table 3.1, Fig. 3.3b), the bimodal pattern of

nucleotide mismatch distribution shown by X. spixii does not rule out two separate, recent

bottlenecks in an already geographically structured population (Fig. 3.3a; Marjoram and

Donnelly 1994). Estimated parameters of Rogers’ (1995) model of sudden population expansion

indicate that these two separate clades of X. spixii could have experienced population expansions

between 5,000 and 70,000 years BP. In spite of its large confidence interval, the time frame

encompassed by this estimate is consistent with major changes in the location of the cerrado -

terra-firme ecotone in eastern Amazonia, when areas covered by forest probably experienced

cycles of retraction and expansion caused by dry and humid periods, respectively (Van der

Hammen and Hooghiemstra 2000). Thus, the two clades of X. spixii could have expanded their

ranges after the return of humid climate conditions as recently as 10,000 years BP, which led to

an expansion of humid forest types (Van der Hammen and Absy 1994). A more thorough

sampling of the X. spixii clade is necessary to further address this hypothesis.
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CHAPTER 4. PHYLOGEOGRAPHY AND POPULATION GENETICS OF TWO
AMAZONIAN FLOODED FOREST BIRD SPECIALISTS: XIPHORHYNCHUS

KIENERII AND XIPHORHYNCHUS OBSOLETUS

The first naturalists to travel throughout Amazonia attributed the replacement of closely

related species in different regions of the basin to wide rivers that posed barriers to dispersal (and

consequently gene flow) of some species (Wallace 1852). This so-called “river effect” has been

demonstrated for populations of birds inhabiting the interior of unflooded (terra-firme) forests,

away from the influence of major Amazonian rivers (Capparella 1991, Hackett 1993; see Chapter

3). In contrast, a substantial portion of the Amazonian avifauna lives in habitats affected by

major rivers, such as flooded (várzea) forests and river islands (Remsen and Parker 1983, Stotz et

al. 1996). The riverine barrier hypothesis of diversification (allopatric differentiation caused by

restriction of gene flow across rivers; see review in Gascon et al. 2000) is not thought to apply to

várzea species because they are capable of colonizing river islands and crossing rivers

(Capparella 1991). Some terra-firme and várzea rodent species were shown to differ in their

population structure because distinct physical and ecological barriers affected gene flow among

populations of these species (Matocq et al. 2000). Várzea forests are distributed linearly along

rivers, a configuration which usually produces a narrow, linear gene flow pattern among

neighboring populations, thus yielding undifferentiated populations within a single river basin

(Patton et al. 2000); in contrast, this pattern of gene flow could potentially result in structured

populations across river basin comparisons. If corroborated, this untested prediction has

important conservation implications. Not only should protected sites encompass extensive areas
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of várzea forest, but also continuous conservation units should be created along every major

Amazonian tributary and interfluvium.

Here, I studied the phylogeography and population genetics structure of two bird species

in the genus Xiphorhynchus (Dendrocolaptidae) found exclusively in flooded forest types

throughout Amazonia: X. kienerii and X. obsoletus. My goal was to answer the following

questions: (1) What is the degree of population structure found among these várzea species

throughout Amazonia ?; (2) Are populations of X. kienerii and X. obsoletus from a single river

basin more genetically similar to each other than populations from different river basins ?; and (3)

If the riverine barrier hypothesis is not applicable to the diversification of várzea species, what

possible alternative hypotheses can explain diversification in these lineages ?

METHODS

Specimens. - I sequenced a total of 21 individuals of X. kienerii and 30 individuals of X. obsoletus

collected throughout Amazonia (see Appendix 3 for collecting localities, populations sample

sizes, and specimens' voucher information).

DNA Sequencing. - Total genomic DNA was extracted from raw frozen tissue and dry skin

samples of recently collected specimens (15 years old or younger) using a Qiagen tissue

extraction kit or a standard phenol/chloroform method (Hillis et al. 1990). I took the following

measures to ensure that ancient DNA extracted from dry skin samples would not be

contaminated by DNA from frozen tissue samples: (1) dry skin samples were extracted in a

different building than were raw tissues; (2) separate Qiagen extraction kits and other consumable

lab supplies were used to perform dry skin and raw tissue extractions; and (3) dry skin
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extractions were always performed with a negative controls (which never showed signs of DNA

contamination when run on an electrophoresis agarose gel). I amplified most of the mitochondrial

gene cytochrome b with the following primers: L14990 (Kocher et al. 1989), L15389 (Hackett

1996), H15710 (Helm-Bychowski and Cracraft 1993), HXIPH

(CATTCTGGTTTGATGTGGGG; designed specifically for this project), L15505

(CTAACCTTCCTACACGAAACC; designed specifically for this project), L15656 (Helm-

Bychowski and Cracraft 1993), and H16065 (Hackett 1996). All primer numbers refer to the 3’

base of the published chicken mtDNA sequence (Desjardins and Morais 1990). Fragments were

PCR amplified using standard conditions available upon request: denaturation at 94°C, annealing

between 50°C and 57°C, and extension at 72°C in a Hybaid OMN-E thermal cycler. A small

aliquot of each amplification was electrophoresed on an agarose gel to check for the correct

fragment size and to ensure that only a single amplification product was obtained. Amplification

products were cleaned with a Qiagen PCR purification kit and cycle-sequenced using a Big Dye

Terminator kit (Perkin Elmer, Norwalk, Connecticut), and all amplification primers listed above.

Cycle sequencing reactions were NH4OAC precipitated, dried, resuspended in a formamide

EDTA, and run on an ABI 377 Automated DNA Sequencer. I aligned and reconciled sequences

from both strands using Sequencher 3.1.1 (Genecodes, Madison, Wisconsin). The following

measures outlined by Sorenson and Quinn (1998) and Bates et al. (1999) were taken to ensure

that the DNA fragments amplified were accurate and of mitochondrial origin (not pseudogenes):

(1) both DNA strands were sequenced; (2) sequences were aligned with the complete chicken

mtDNA sequence, and then inspected for insertions, deletions, and stop codons that would result
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in a nonfunctional protein; and (3) sequences were expected to exhibit high transition to

transversion substitution ratios characteristic of mitochondrial, not nuclear substitution patterns.

I could not detect any evidence of pseudogenes in the sequences used for this study.

Phylogenetic Analysis. – Due to the relatively shallow level of divergence among haplotypes

sampled in this study, I estimated haplotype networks for X. kienerii and X. obsoletus using the

software TCS 1.13 (Clement et al. 2000). TCS uses the method known as statistical parsimony

(Templeton et al. 1992) to generate an unrooted cladogram based on a pairwise matrix of absolute

differences among haplotypes (Clement et al. 2000). I ran TCS 1.13 with the 95% limit of

parsimony (Templeton et al. 1992). I used the likelihood ratio test (Yang et al. 1995) to evaluate

whether ingroup and outgroup cytochrome b sequences of X. kienerii and X. obsoletus were

evolving in a clock-like manner. Therefore, I first used the likelihood ratio test as implemented in

MODELTEST (Posada and Crandall 1998) to select the best and simplest model of molecular

evolution fitting my dataset, which was then used to construct maximum likelihood estimates of

phylogeny for unique haplotypes of X. kienerii and X. obsoletus using the software PAUP * 4.0

b10 (Swofford 2002). Sequences of Xiphorhynchus picus and Xiphorhynchus guttatus were

chosen as outgroups because these two species were found in the same clade as X. kienerii and X.

obsoletus, respectively, according the phylogeny estimated for the genus Xiphorhynchus in

chapter 2. For the rate heterogeneity test, scores of two maximum likelihood heuristic searches

conducted in PAUP* 4.0b10 (under the model of nucleotide substitution selected by

MODELTEST) were contrasted: one without enforcing a molecular clock and another assuming a

clock-like rate of nucleotide substitution.
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Population Genetics Analyses. – Haplotype diversity (h), nucleotide diversity (π) (Nei 1987,

equations 8.5 and 10.5, respectively), and Tajima’s (1989) D test for departure of neutrality were

calculated for populations of X. kienerii and X. obsoletus using software Arlequin 2.000

(Schneider et al. 2000). Tajima’s D was also computed for all unique haplotypes recovered for

both X. kienerii and X. obsoletus. An analysis of molecular variance (AMOVA; Excoffier et al.

1992) was performed for all populations and areas of endemism using Arlequin 2.000 (Schneider

et al. 2000). AMOVA uses haplotype frequencies and the number of mutations between them to

test the significance of the variance components associated with up to three hierarchical levels of

genetic structure: within populations, among populations between groups, and among groups.

Pairwise mismatch distributions (Rogers and Harpending 1992) and parameters of Rogers’ (1995)

model of sudden population expansion were also calculated for all populations of X. kienerii and

X. obsoletus using Arlequin 2.000 (Schneider et al. 2000).

RESULTS

Description of mtDNA Sequences. – Cytochrome b sequences recovered were aligned

unambiguously and showed expected codon biases and an overall deficit of guanines as reported

for other avian cytochrome b gene sequences (Moore and DeFilippis 1997). Sequences obtained

were trimmed to 908 and 919 bp for X. kienerii and X. obsoletus, respectively, spanning

positions 15116 to 16035 of the cytochrome b chicken sequence (Desjardins and Morais 1990).

A total of 5 and 11 unique haplotypes was recovered for X. kienerii and X. obsoletus,

respectively. For X. kienerii, nucleotide substitutions were observed at 4 sites (0.4%), only one

of which was potentially phylogenetically informative. For X. obsoletus, nucleotide substitutions
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occurred at 11 sites (1.2%), 3 of which were potentially phylogenetically informative.

Uncorrected p distances among haplotypes ranged from 0.01% to 0.2% for X. kienerii and

between 0.1% and 0.4% for X. obsoletus. The hypothesis of a clocklike rate of evolution for all

cytochrome b sequences recovered for X. kienerii and X.  obsoletus and outgroups could not be

rejected (TrN[clock], lnL = -1664.9843, χ2
[5] = 2.55, P > 0.75 for X. kienerii and HKY[clock], lnL = -

1752.7817, χ2
[10] = 4.62, P > 0.90 for X. obsoletus).

Phylogeography. – A statistical parsimony network with 5 haplotypes was obtained for X.

kienerii (Fig. 4.1). In this network, 4 haplotypes were separated from the most widespread

haplotype (called haplotype 1) by just one mutational step each (Fig. 4.1). For X. obsoletus, a

statistical parsimony network with 12 haplotypes was recovered, 11 of which were directly

sampled, whereas one was hypothetical and inferred as missing from my sample (Fig. 4.2). Most

(7) haplotypes recovered for X. obsoletus were separated from the commonest and most

widespread haplotype (referred to as haplotype 1) by just one mutational step, whereas 3 other

haplotypes were separated from haplotype 1 by two mutational steps (Fig. 4.2). Haplotype 1

for both X. kienerii and X. obsoletus had the highest frequency in most population sampled (Figs.

4.1 and 4.2). This pattern, added to the shallow levels of divergence and few mutational steps

separating haplotypes recovered for both X. kienerii and X. obsoletus, indicate a lack of

phylogeographic structure for both species throughout Amazonia.

Population Genetics Analyses. – Indices of haplotype and nucleotide diversity were generally

low for X. kienerii and X. obsoletus but varied considerably geographically, being higher for

populations of both species in western Amazonia (Table 4.1).
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Figure 4.1. Map with location of populations sampled and statistical parsimony network
estimated for Xiphorhynchus kienerii throughout Amazonia. The square and ellipses represent
unique haplotypes, and their sizes correspond to frequencies of occurrence in all populations
(also shown by numbers next to haplotype symbols). Each line connecting two haplotypes
represents a single mutational step (substitution) separating them. Numbers within the square
and ellipses indicate sampled populations (found on the map) where the haplotypes were
recovered. See Appendix 3 for exact location of sampled populations and voucher information.
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Figure 4.2. Map with location of populations sampled within recognized areas of avian endemism
(Cracraft 1985), and statistical parsimony network estimated for Xiphorhynchus obsoletus
throughout Amazonia. The square and ellipses represent unique haplotypes sampled, and their
sizes correspond to frequencies of occurrence in all populations (also shown by numbers next to
haplotype symbols). Each line connecting two haplotypes represents a single mutational step
(substitution) separating them. A single missing haplotype inferred by statistical parsimony is
represented by a circle filled with an “M”. Numbers within the square and ellipses indicate
sampled populations (found on the map) where the haplotypes were recovered. See Appendix 3
for exact location of sampled populations and voucher information.
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TABLE 4.1 - Geographically distributed genetic variability in Xiphorhynchus kienerii and X.
obsoletus throughout Amazonia. Includes number of individuals and populations sampled,
haplotype diversity (h), nucleotide diversity (π), and results of Tajima's (1989) D test.

Species /
Areas

No. Individuals
(Population [s]

sampled) a

Haplotype
diversity
(h)±±±±V(h)

Nucleotide
diversity
(ππππ)±±±±V(ππππ)

Tajima's D test b

X. kienerii
Upper Amazonas 7

(7, 8)
0.28±0.19 2.8±3.9 •10-4 - 1.00 N.S

Lower Japura 4
(6)

0.83±0.22 4.9±6.1 •10-4 - 0.61 N.S.

Central Amazonia 6
(2 – 5)

0.73±0.15 8.6±8.0 •10-4 - 0.05 N.S

Lower Amazonia 4
(1)

0 0 0

X. obsoletus
Guyana 5

(10)
0.40±0.23 4.0±5.0 •10-4 - 0.82 N.S

Pará / Belém 8
(1 – 3)

0.46±0.20 5.0±5.3 •10-4 - 1.31 N.S

Rondônia 5
(4, 5)

0.60±0.17 6.0±6.5 •10-4 1.22 N.S

Inambari 6
(6, 7)

0.93±0.12 1.5±1.2 •10-3 - 0.67 N.S

Napo 6
(8, 9)

0.80±0.17 1.6±1.3•10-3        - 1.34 *

a See Figures 4.1 and 4.2 for geographic location of populations and areas of endemism.
b Tajima's D Neutrality test (1989); N.S., non-significant departure from neutrality (All P >
0.12); * marginally significant departure from neutrality at P = 0.056.
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Results of Tajima’s D tests showed that most populations of X. kienerii and  X. obsoletus

had non-significant negative values (Table 4.1). Only one population of X. obsoletus (Inambari)

showed a marginal departure of neutrality (Table 4.1). However, when Tajima’s D was applied

to all sampled populations of X. kienerii and X. obsoletus, significantly negative results were

obtained (D = - 1.65; P < 0.05 and D = - 2.08; P < 0.01, respectively), and hence consistent with

a recent demographic expansion or population bottleneck at a broad geographic scale (Rand

1996). Analyses of Molecular Variance (AMOVA) showed that most of the genetic variation

detected in populations of the X. kienerii (93.8%) and X. obsoletus (95.4%) was partitioned

within populations, and therefore not structured geographically (Table 4.2).

Nucleotide mismatch distributions for both X. kienerii and X. obsoletus were unimodal

and could not reject the null hypothesis of a recent sudden population expansion as formulated

by Rogers (1995; Fig. 4.3; P > 0.20 for X. kienerii and P > 0.80 for X. obsoletus). Assuming a

mitochondrial clocklike substitution rate of 2% per million years (Klicka and Zink 1997),

unimodal mismatch distributions for X. kienerii and X. obsoletus were consistent with a recent

population expansion, probably preceded by a bottleneck, that took place between 1,500 and

15,500 years BP for X. kienerii and between the present and 18,000 years BP for X. obsoletus

(Rogers 1995).

DISCUSSION

Population Structure of Várzea Species. – Both X. kienerii and X. obsoletus exhibited the very

similar pattern of virtually no phylogeographic structure throughout their ranges.
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TABLE 4.2 - Results from an analysis of molecular variance (AMOVA) among populations of
Xiphorhynchus kienerii and Xiphorhynchus obsoletus distributed throughout Amazonia. See
figures 1 and 2 for geographic locations of populations.

Species No. of
populations

Variation
among

populations
(%) a

Variation
within

populations
(%)

Xiphorhynchus kienerii 4   6.2 ** 93.8

Xiphorhynchus obsoletus 5 4.6 * 95.4

a ** P > 0.10; * P > 0.08.
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Figure 4.3. Pairwise nucleotide mismatch distributions for X. kienerii (A) and X. obsoletus (B).
Histograms represent the observed differences, whereas thin lines indicate the ideal distribution
predicted by the model of sudden population expansion developed by Rogers (1995).
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This absence of phylogeographic structure fits the “category IV phylogeographic pattern”

described by Avise (2000), in which closely related lineages of a shallow gene tree are broadly

sympatric. This phylogeographic pattern has been interpreted as resulting from high levels of

gene flow among populations of species whose ranges were not fragmented by long-term

vicariant barriers (Avise 2000). Additionally, as can be inferred from the strongly unimodal shape

of their mismatch distributions and significant negative values of Tajima’s D test (Table 4.1, Fig.

4.3), both X. kienerii and X. obsoletus probably have had small evolutionary effective population

sizes but experienced a recent explosive demographic expansion (Rand 1996, Avise 2000). Other

várzea vertebrate species for which phylogeographic surveys are available include rodents in the

genera Mesomys and Proechimys (Patton et al. 1994, Matocq et al. 2000). These studies have

documented the same “category IV phylogeographic pattern” (sensu Avise 2000) for these

várzea species, with higher levels of gene flow and shallower gene trees than those recovered for

other mammal terra-firme (unflooded) forest species (Peres et al. 1997, Patton et al. 1996, 2000).

The same dichotomy in phylogeographic patterns detected for várzea and terra-firme species of

mammals can be extended to birds in the genus Xiphorhynchus, because two of its terra-firme

species (X. spixii and X. elegans) showed deep gene trees, with major lineages largely allopatric

(Chapter 3).

Although populations of terrestrial mammals might be adversely affected by the annual

floods occurring in várzea forests (Matocq et al. 2000), the same does not apply to arboreal bird

species such as X. kienerii and X. obsoletus, which forage and roost in várzea forests even when

flooded (pers. obs.). Therefore, high levels of gene flow among populations of X. kienerii and X.

obsoletus can probably be explained by high dispersal capabilities associated with the narrow
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shape and continuity of the várzea habitat in Amazonia. Várzea and other flooded forest types

found in Amazonia occur only along rivers or their immediate influence and therefore are more

limited in distribution than the more widespread terra-firme forest. Thus, when compared to

terra-firme species, gene flow among populations of várzea specialist species can occur only

through “corridors” of habitat paralleling the distribution of Amazonian rivers, which are

ultimately all connected to the Amazon river. The continuity and “corridor” nature of the várzea

habitat in Amazonia can thus explain why the expectation of finding genetically structured

populations in different river basins was not fulfilled for X. kienerii or X. obsoletus (Figs. 4.1 and

4.2). As the haplotype networks showed (Figs. 4.1 and 4.2), populations from river basins as far

apart as the Essequibo (Guyana), Tapajós  (Brazil), and Napo (Ecuador) shared most of their

haplotypes, indicating a connection that may have occurred along the extensive várzea forests

found on both banks and on several islands of the Amazon river. This hypothesis can be tested in

the future with faster genotypic markers such as microsatellites. Finally, two additional factors

might promote admixture in populations of várzea species, especially between adjacent river

basins: (1) the colonization of river islands with vegetation at a late successional stage, which

may serve as a “stepping stone” mechanism connecting populations from opposite river banks,

and (2) the especially common phenomenon in western Amazonia of lateral river channel

migration, which is responsible for across-river transfer of large pieces of land (Salo et al. 1986)

and populations of várzea species (Patton et al. 2000).

The lack of population structure documented for várzea species in Amazonia (Patton et

al. 1994, Matocq et al. 2000, this study), clearly indicates that populations of these species

experienced historical and current high levels of gene flow probably associated with several
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population bottlenecks, which may have cyclically erased genetic diversity. In the case of X.

kienerii and X. obsoletus, mismatch distributions (Fig. 4.3) point to a fairly recent massive

population expansion occurring during the last 18,000 years. This population expansion cannot

be easily correlated with a single event but it coincides with a period of continuous sea-level rise

since the Last Glacial Maximum (LGM), about 20,000 years BP (Irion et al. 2002). During the

rapid sea-level rise in the early and mid-Holocene, the flow of the Amazon river system was

gradually slowed down and dammed by the ocean. River stages increased significantly throughout

Amazonia, causing stronger seasonal floods in a phenomenon called “damming back effect” (Irion

et al. 2002). The “damming back effect” of the Amazon river system increased the area occupied

by alluvial plains, therefore also causing an expansion of the várzea and other seasonally flooded

forest types throughout Amazonia (Irion et al. 2002). Because sea-level changes have strongly

affected the hydrology of the Amazon river system since the late Tertiary and early Quaternary,

the extension of flooded forest habitats in Amazonia probably varied considerably and cyclically

through time (Irion et al. 1995, 2002). Populations of várzea species may have experienced

population bottlenecks during periods of low sea-level stands, which promoted a decrease in the

area covered by alluvial plains in Amazonia. During periods of high sea-level stands, population

bottlenecks were replaced by episodes of population expansion in response to an increase in the

area covered by alluvial plains (Irion et al. 2002). More studies on different lineages of várzea

specialist species are needed to test the validity and generality of this hypothesis.

The western Amazonian lowlands could have been the source area for the last episode of

population expansion inferred for X. kienerii and X. obsoletus. Recurrent periods of high sea-level

stands affected the western Amazonian lowlands in a disproportionate way by creating larger
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expanses of floodplains than in other, higher, parts of the basin such as the Brazilian and Guianan

shields (Irion et al. 1995). Therefore, during periods of low sea-level stands, larger pockets of

várzea forest might have remained in the poorly drained western lowlands than in other parts of

Amazonia. Higher levels of haplotype and nucleotide diversity observed for X. kienerii and X.

obsoletus in western Amazonia (Table 4.1) are consistent with this scenario. Ideally, this

hypothesis could be tested with a better sampling and with more phylogenetically independent

lineages.

Historical Diversification of Várzea Species – The low levels of phylogeographic differentiation

found for X. kienerii and X. obsoletus pose a serious challenge to answering the question: what

possible hypotheses can explain diversification in lineages of várzea species ? As expected, the

riverine barrier hypothesis of Amazonian diversification (Gascon et al. 2000) cannot be invoked

to explain diversification within lineages of várzea species. As noted in chapter 1, várzea species

function as a control group when testing the riverine barrier hypothesis because these species

inhabit riverine habitats along and on Amazonian rivers. The lack of phylogeographic structure

observed for X. kienerii, X. obsoletus, and other várzea species (Patton et al. 1994, Matocq et al.

2000) is thus consistent with expectations of the riverine barrier hypothesis for these species.

In phylogenies estimated for the genus Xiphorhynchus (chapter 1), X. kienerii and X.

obsoletus are found at the tip of long branches, and they are separated from their nearest relatives

by large uncorrected sequence divergence values (ca. 8%), indicating a relatively older age

compared to other species in the same genus. As also shown in chapter 1, cladogenesis in terra-

firme lineages was far greater than in várzea lineages, which were found in ecologically diverse

clades. Therefore, the phylogenetic positions of X. kienerii and X. obsoletus suggest that these
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species occupied the várzea forest habitat early on during the first burst of diversification in the

genus Xiphorhynchus. Since then, as suggested by low levels of population differentiation,

historically high levels of gene flow associated with population bottlenecks prevented

diversification and cladogenesis in várzea lineages of the genus Xiphorhynchus. Because the

várzea and terra-firme habitats can be affected differently by the same mechanisms (e.g., changes

in sea-level; see chapter 3), it is likely that várzea species will require a fundamentally different

set of hypotheses than those proposed so far to explain the diversification of terra-firme species

(e.g., riverine barrier, refuge, and basal trichotomy hypotheses).
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CHAPTER 5. GENERAL DISCUSSION AND CONCLUSIONS

Phylogenetic and population genetics analyses of species in the genus Xiphorhynchus

presented in the previous chapters provided important insight into the validity and generality of

some hypotheses proposed to explain diversification among lineages of Amazonian organisms.

Here, I discuss to what degree the predictions of these hypotheses were supported, and propose

a few changes and additions aimed at improving them as models of diversification. Lastly, I

discuss an integrated model to explain the diversification of both várzea and terra-firme species

in Amazonia.

THE RIVERINE BARRIER HYPOTHESIS

The data presented in chapters 3 and 4 supported the predictions of the riverine barrier

hypothesis only for: (1) terra-firme species and (2) populations inhabiting the Brazilian shield in

the eastern part of Amazonia. As predicted (Capparella 1991, chapter 1), gene flow among

populations of várzea species is not inhibited by rivers (or any other current physical barrier;

chapter 4). Terra-firme species, on the other hand, can have gene flow among their populations

inhibited by rivers, not only because of the width of many Amazonian rivers themselves, but also

because of the lateral extension of the floodplain belt associated with them. The floodplain

vegetation, from early successional scrub to tall flooded forest, is unsuitable habitat for terra-

firme forest birds. Thus, rivers and its associated vegetation consist of physical and ecological

barriers inhibiting gene flow between populations of terra-firme species from opposite river

banks (Capparella 1991, Haffer 1992a, Chapter 3). Interestingly, data shown in chapter 3
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indicated that patterns of gene flow in terra-firme species are not always affected by rivers and

their associated floodplains. In the case of the Xiphorhynchus spixii / elegans superspecies,

important western Amazonian rivers (Madeira, Purús, Juruá, and Ucayali) did not function as

significant barriers inhibiting or impeding gene flow among populations from opposite river banks

(Chapter 3). In contrast, rivers on the Brazilian shield did act as important barriers, coinciding

with areas of primary divergence between sister lineages of X. spixii (Xingú river), and between

the two main clades in the X. spixii / elegans superspecies: X. spixii and X. elegans (Tapajós

river). No evidence of gene flow between these sister clades was found even at the headwaters of

the Xingú  and Tapajós  rivers, where the width and associated barrier effect of these rivers are

presumably smaller (Haffer 1992a). Furthermore, as anticipated by the riverine barrier

hypothesis, the split between the X. elegans and X. spixii clades on the Brazilian shield was

probably completed by 3 million years BP (Chapter 3), thus after the completion of the

development of the Amazon river system as a transcontinental drainage in the late Miocene

(Hoorn et al. 1995). As discussed in chapter 3, the younger age and more dynamic nature of the

western Amazonian floodplains could be responsible for these contrasting patterns of barrier

effect promoted by rivers in different parts of Amazonia (Ayres and Clutton-Brock 1992,

Colwell 2000, Gascon et al. 2000).

The predictability of the riverine hypothesis can be improved if more phylogeographic

studies show that white water Amazonian tributaries originating in the Andean slopes of western

Amazonia do not act as important barriers restraining gene flow between populations of terra-

firme species, and therefore are not important in promoting diversification within these lineages

(see review in Gascon et al. 2000). As Colwell (2000) and data in chapter 3 implied, the
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geological setting of a river’s location may be the best predictor of its importance as a barrier to

gene flow for populations of terra-firme species. Another prediction that can further refine the

riverine barrier hypothesis is that rivers in geologically older and more stable parts of Amazonia

(such as the Brazilian and Guianan shields) will function as important barriers restraining or

impeding gene flow between sister lineages of terra-firme species, thus contributing to

diversification in these lineages (Ayres and Clutton-Brock 1992, Haffer 1992a, Colwell 2000).

An independent study on Callithrix marmosets also seemed to support an important role for

rivers on the Brazilian shield in promoting population differentiation and speciation in lineages of

terra-firme species (Roosmalen et al. 2000).

THE REFUGE HYPOTHESIS

Data presented in chapters 3 and 4 showed that populations of both várzea and terra-firme

species of Xiphorhynchus probably experienced periods of population bottlenecks and

expansion. According to the refuge hypothesis, under a population genetics framework,

population bottlenecks are expected during periods of forest contraction (after the onset of dry

climatic conditions), whereas population expansion is predicted during periods of forest

expansion, following humid climatic conditions (Capparella 1991). The refuge hypothesis

probably cannot be applied to várzea species, because gallery forests, bordering Amazonian

rivers, probably remained intact even under dry climactic conditions (Haffer and Prance 2001), in

a situation analogous to the one observed today in the cerrados of central Brazil and eastern

Bolivia. Indeed, shallow haplotype divergences and a very low geographic population

differentiation detected for both várzea species of Xiphorhynchus seem to indicate that these
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species have not experienced historical impediments to gene flow at a large geographical scale

(Chapter 4). Therefore, the population expansion estimated for X. kienerii and X. obsoletus to

have taken place during the last 18,000 years BP was probably not influenced by a period of

rainforest expansion, as envisioned by the refuge hypothesis (Haffer and Prance 2001). Instead,

as discussed in chapter 4, these demographic expansions are more logically correlated with an

increase in the area covered by floodplains in Amazonia, following a period of continuous sea

level rise.

Terra-firme species, on the other hand, inhabit the forest away from the influence of

major Amazonian rivers and can be affected by a reduction or replacement of rainforest by drier,

more open forest types, as postulated by the refuge hypothesis (Haffer and Prance 2001).

Population bottlenecks and a fairly recent range expansion were inferred for X. spixii (a terra-

firme species) in eastern Amazonia (Chapter 3). The time frame of this demographic expansion

(between 5,000 and 70,000 years BP) coincided with a period of at least four inferred episodes of

forest regression and expansion in eastern Amazonia (Absy et al. 1991), followed by the return

of humid climate conditions (starting about 10,000 years BP), which led to a re-expansion of

humid forest types (Van der Hammen and Absy 1994). However, according to paleoecological

data, rainforest may have also been disrupted by drier vegetation types in the western portion of

the Brazilian shield (Van der Hammen and Absy 1994), where populations of X. e. elegans failed

to exhibit signs of low genetic variability (expected during episodes of population bottleneck), or

a recent sudden demographic expansion (Chapter 3), as expected under the refuge hypothesis.

Therefore, the only way to reconcile this pattern with the refuge hypothesis is by postulating

that climatic vegetational changes were much stronger in the eastern than in the western part of
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the Brazilian shield, therefore substantially undermining the importance of the refuge hypothesis

in accounting for the diversification of the entire Amazonian terra-firme forest biota. However,

this regional difference in the impact of climatic vegetational changes is unlikely given the current

available evidence for southern Amazonia as a whole (Van der Hammen and Absy 1994, Mayle

et al. 2000).

Unfortunately, it is still very difficult to develop phylogeographic predictions based on

the refuge hypothesis (Chapter 1), but population genetics studies can potentially address

directly some of its key predictions. Hence, more population genetics studies are needed to

document the existence, timing, and location of population bottlenecks and demographic

expansions of terra-firme species in Amazonia. More paleoecological data are also needed to

evaluate the impact of drier climates on the rainforest biota, and especially to clarify whether it

was fragmented by open savanna or dry forest types (Haffer and Prance 2001). When these data

become available, a better assessment of the validity and generality of the refuge hypothesis will

be possible.

THE GRADIENT HYPOTHESIS

Phylogenies estimated for species in the genus Xiphorhynchus did not recover a single sister

relationship between várzea and terra-firme species, as expected if the várzea – terra-firme

ecotone contributed to the recent diversification of Xiphorhynchus (Chapter 2). Most

phylogenetic studies testing the gradient hypothesis for tropical vertebrate taxa failed to verify

its predictions (Mayr and O’Hara 1986, Cracraft and Prum 1988, Patton and Smith 1992,

Arctander and Fjeldså 1994). However, recently the gradient hypothesis of parapatric speciation
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was invoked to explain genetic and morphometric differentiation in several lineages of African and

Australian vertebrates, even though direct evidence showing that sympatric speciation was

responsible for the splitting within those lineages was lacking (Smith et al. 2001). Even if

corroborated in some cases, the falsification of the gradient hypothesis (in its várzea – terra-

firme version) by phylogenies of the genus Xiphorhynchus agrees with the overall consensus of

failing to find support for this hypothesis in accounting for the diversification of tropical

vertebrates (Haffer 1997a).

THE BASAL TRICHOTOMY HYPOTHESIS

Phylogenetic and population genetics analyses of the Xiphorhynchus spixii / elegans superspecies

supported key predictions of the basal trichotomy hypothesis (Chapter 3). The most important

one was that the Brazilian shield in central and eastern Amazonia represented the main area of

population diversification and speciation for the X. spixii / elegans superspecies, in addition to

being the source area for the colonization of the western Amazonian lowlands by populations of

this superspecies (Chapter 3). This pattern is expected under the basal trichotomy hypotheses

because the Brazilian shield is thought to have escaped the influence of marine invasions or a

“damming back effect” of the Amazon river during periods of high sea level stands (Räsänen et al.

1995, Bates in press, Irion et al. 2002). The western Amazonian lowlands, on the other hand,

because of their extremely low elevation and poor draining conditions, may have been affected

disproportionately by periods of high sea levels, which led to the disruption of rainforest by a

mangrove-like vegetation (in the case of a marine incursion; Hoorn 1994), or by seasonally

flooded forest types (in the case of a “damming back effect” of the Amazon river system; Irion et
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al. 2002). An estimate of the timing of the colonization of western Amazonia by populations of

the X. spixii / elegans superspecies indicated that it started too late (Middle Pleistocene) to be

explained by the end of a period of direct marine influence in western Amazonia (Chapter 3,

Hoorn et al. 1995). Nevertheless, massive marine incursions into western Amazonia as early as

the Early and Middle Miocene (Hoorn et al. 1995) could have separated sister superspecies of

Xiphorhynchus, such as the X. pardalotus / ocellatus and X. spixii / elegans superspecies (Chapter

1). These two currently sympatric superspecies diverged by 12.4% in their cytochrome b

sequences (Tamura and Nei distance with a gamma shape parameter of α= 0.15; chapter 3),

which translates to a split dating back to about 6 million years (assuming a clocklike rate of

mtDNA substitution of 2% per million years; Klicka and Zink 1997). Phylogeographic and

population genetics analyses of the X. pardalotus / ocellatus superspecies could potentially

reveal whether populations of this superspecies from the Brazilian shield (inferred as the place of

origin for its sister superspecies, X. spixii / elegans) colonized this area more recently, either from

the Guianan shield or the eastern base of the Andes, two other centers of vicariance according to

the basal trichotomy hypothesis (Bates in press). Distributional data indicate that populations of

X. ocellatus from the Brazilian shield are scarce and locally distributed, whereas those in western

Amazonia and Andean foothills are more common and widespread, the same also occurring with

populations of X. pardalotus from the Guianan shield.

Therefore, I suggest the following two additions to the basal tricotomy hypothesis aimed

at improving its predictability and generalization power. The first addition is to acknowledge that

different lineages will differ in their areas of diversification and vicariance. Thus, as shown in
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chapter 3, the Brazilian shield, Guianan shield, and eastern base of the Andes will be areas of

primary differentiation for some lineages, but areas colonized more recently by younger

populations of other lineages. This apparently simple suggestion was absent from the original

formulation of the basal trichotomy hypothesis (Bates in press), probably because this

hypothesis was based primarily on area cladistics, which treats dispersal as homoplasy, and

therefore discards it from the inference of area cladograms. The second addition is to propose that

mechanisms other than marine incursions can be also invoked as vicariant mechanisms behind the

basal trichotomy hypothesis (Bates in press). For example, periods of high-sea level have been

suggested to have strongly influenced the Amazon river system, promoting the so-called

“damming back effect” and an associated back flooding of the Amazon river drainage (Irion et al.

2002). This “damming back effect” apparently affected the Amazon river valley and the western

Amazonian lowlands more strongly than higher and hilly areas in Amazonia, such as the Brazilian

and Guianan shields. I further suggest that although Early and Middle Miocene marine incursions

could account for deeper splits between currently sympatric superspecies, periods of high sea

level promoting the “damming back effect” in the Amazon river drainage could explain splits

between closely related taxa within superspecies of Amazonian terra-firme birds.

AN INTEGRATED MODEL OF DIVERSIFICATION FOR VÁRZEA AND TERRA-FIRME
SPECIES IN AMAZONIA

Of the four hypotheses of diversification addressed herein, three had some of their important

predictions supported: the riverine barrier, the refuge, and the basal trichotomy hypotheses.

Hence, these three hypotheses appear not to be mutually exclusive and may together account for
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the diversification of the genus Xiphorhynchus in Amazonia at different temporal and

geographical scales. As discussed earlier, these three hypotheses of diversification are readily

applicable to terra-firme species but not to várzea species.

As suggested by phylogenetic and population genetics analyses of várzea species of

Xiphorhynchus (chapter 4), I propose that the extensive floodplains of western Amazonia were

refuges for várzea species during periods of low sea level and strong floodplain erosion

throughout Amazonia (Irion et al. 2002). Thus, the western Amazonian lowlands were the source

area for a recent colonization of the entire Amazon basin by várzea species, starting after the

onset of periods of increasing high sea level during the LGM (20,000 years BP). This hypothesis

can be tested with additional phylogeographic and population genetics assessments of different

lineages of várzea species throughout Amazonia. The distribution and dynamics of the várzea

and other flooded forest types in Amazonia is not conducive to population subdivision even at

large time scales (chapter 4). Therefore, I suggest that extant lineages of várzea species will show

little population subdivision and small rates of cladogenesis, being “relicts” of early radiations of

widespread Neotropical lineages.

Although the extensive floodplains of western Amazonia might have functioned as refuges

for várzea species, they constituted an inhospitable habitat to terra-firme species. Therefore, I

predict that lineages of terra-firme species inhabiting western Amazonia will have colonized this

area fairly recently (during the Middle and Late Pleistocene) from one of the three areas inferred

as centers of vicariance by the basal trichotomy hypothesis: the Brazilian shield, the Guianan

shield, or the eastern slopes of the Andes (Bates in press). Another expectation is that deeper

splits in currently sympatric lineages of Amazonian terra-firme superspecies (predicted to date
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back to the Late Miocene) will be consistent with expectations of the basal trichotomy

hypothesis, in which sister superspecies will differ in their areas of origin and diversification.

Main splits between allopatric taxa of terra-firme superspecies should date back to the Pliocene

and are also expected to follow area relationships expected under the basal trichotomy

hypothesis, or alternatively, to be consistent with the riverine barrier hypothesis in geologically

older and more stable parts of Amazonia such as the Brazilian and Guianan shields. Finally,

shallower levels of divergence in Amazonian terra-firme superspecies could be consistent with a

multiple chain of events, including an invasion and rapid colonization of the western Amazonian

lowlands by lineages experiencing cycles of population bottlenecks and demographic expansions

(chapter 3), or with isolation by distance mechanisms, which can be enhanced by rivers or by

climatic vegetational changes, as postulated by the refuge hypothesis.
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APPENDIX 1: VOUCHER INFORMATION FOR TISSUE SAMPLES USED IN CHAPTER 2

Taxon Voucher
institution a

Voucher
number b

Tissue
institution a

Collection Locality GenBank accession numbers

Glyphorynchus spirurus MPEG JDW 445 LSUMZ Bahia, Brazil AY089806, AY089833, AY089890
Sittasomus griseicapillus CBF SWC 6769 LSUMZ La Paz, Bolivia AY089796, AY089834, AY089894
Nasica longirostris LSUMZ 115014 LSUMZ Loreto, Peru AY089797, AY089835, AY089880
Dendrocolaptes certhia MHNJP DLD 133 LSUMZ Loreto, Peru AY089817, AY089856, AY089917
Lepidocolaptes albolineatus LSUMZ 153311 LSUMZ Santa Cruz, Bolivia AY089825, AY089865, AY089876
Lepidocolaptes angustirostris MHNNKM MDC 363 LSUMZ Santa Cruz, Bolivia AY089811, AY089838, AY089881
Lepidocolaptes fuscus MPEG AA 568 LSUMZ Bahia, Brazil AY089819, AY089851, AY089904
Campyloramphus trochilirostris LSUMZ 153671 LSUMZ Santa Cruz, Bolivia AY089822, AY089857, AY089906
Campyloramphus procurvoides FMNH DEW 2685 LSUMZ Amazonas, Venezuela AY089795, AY089836, AY089903
Campyloramphus falcularius MZUSP LFS 99/378 MZUSP Bahia, Brazil AY089810, AY089837, AY089905
Hylexetastes perrotii LSUMZ 150674 LSUMZ Santa Cruz, Bolivia AY089809, AY089873, AY089916
Xiphocolaptes promeropirhynchus LSUMZ CCW 718 LSUMZ Cajamarca, Peru AY089798, AY089872, AY089907
Dendrexetastes rufigula MHNJP SWC 2358 LSUMZ Loreto, Peru AY089829, AY089839, AY089902
X. erythropygius aequatorialis ANSP FHS 85 LSUMZ Pichincha, Ecuador AY089832, AY089847, AY089879
X. e. insolitus c LSUMZ 163547 LSUMZ Chiriqui, Panama AY089830, AY089858, AY089898
X. flavigaster eburneirostris FMNH DSW 2986 LSUMZ Toledo district, Belize AY089799, AY089871, AY089912
X. flavigaster flavigaster c FMNH 394017 FMNH Oaxaca, Mexico AY089828, AY089849, AY089896
X. guttatus guttatus MPEG AA 570 LSUMZ Bahia, Brazil AY089808, AY089869, AY089908
X. g. eytoni MPEG MR-003 LSUMZ Pará, Brazil AY089794, AY089845, AY089884
X. g. dorbigignyanus LSUMZ 153308 LSUMZ Santa Cruz, Bolivia AY089816, AY089840, AY089891
X. g. guttatoides MPEG AA 611 LSUMZ Amazonas, Brazil AY089792, AY089855, AY089892
X. g. guttatoides MPEG AA 695 LSUMZ Amazonas, Brazil AY089791, AY089866, AY089882
X. g. polystictus MPEG Ch202 FMNH Amapá, Brazil AY089814, AY089843, AY089887
X. g. vicinalis MPEG SML86-140 FMNH Rondônia, Brazil AY089803, AY089850, AY089888
X. kienerii LSUMZ 165752 LSUMZ Amazonas, Brazil AY089818, AY089862, AY089911
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X. lachrymosus ANSP 185351 ANSP Esmeraldas, Ecuador AY089807, AY089870, AY089900
X. obsoletus obsoletus ANSP 188595 ANSP Iwokrama, Guyana AY089823, AY089868, AY089913
X. ocellatus chunchotambo LSUMZ 161705 LSUMZ Loreto, Peru AY089815, AY089844, AY089915
X. o. brevirostris LSUMZ 101904 LSUMZ La Paz, Bolivia AY089793, AY089846, AY089885
X. o. ocellatus MPEG AA 581 LSUMZ Pará, Brazil AY089804, AY089861, AY089909
X. o. weddellii LSUMZ 119520 LSUMZ Loreto, Peru AY089820, AY089859, AY089878
X. pardalotus MPEG AA 602 LSUMZ Pará, Brazil AY089831, AY089848, AY089910
X. picus picus MPEG MCH 362 LSUMZ Amazonas, Brazil AY089813, AY089867, AY089901
X. p. altirostris ___ d ___ d STRI Island of Trinidad AY089790, AY089853, AY089877
X. p. bahiae MPEG AA 560 LSUMZ Bahia, Brazil AY089821, AY089860, AY089886
X. p. phalara c ___ d ___ d STRI Venezuela AY089802, AY089854, AY089893
X. spixii elegans MPEG AA 290 LSUMZ Rondônia, Brazil AY089805, AY089852, AY089899
X. s.  juruanus MPEG AA 236 LSUMZ Rondônia, Brazil AY089824, AY089874, AY089883
X. s. ornatus LSUMZ 109706 LSUMZ Loreto, Peru AY089812, AY089841, AY089889
X. s. spixii MPEG MR-002 LSUMZ Pará, Brazil AY089801, AY089875, AY089897
X. susurrans LSUMZ 163545 LSUMZ Panamá, Panamá AY089800, AY089863, AY089914
X. triangularis bangsi LSUMZ 162637 LSUMZ La Paz , Bolivia AY089826, AY089864, AY089918
X. t. intermedius LSUMZ 105872 LSUMZ Pasco, Peru AY089827, AY089842, AY089895

a ANSP = Academy of Natural Sciences, Philadelphia; CBF = Colección Boliviana de Fauna, Museo Nacional, La Paz, Bolivia; FMNH
= Field Museum of Natural History, Chicago; LSUMZ = Louisiana State University Museum of Natural Science, Baton Rouge;
MHNJP = Museo de Historia Natural Javier Prado, Lima, Peru; MHNNKM = Museo de Historia Natural Noel Kempff Mercado,
Santa Cruz, Bolivia; MPEG = Museu Paraense Emílio Goeldi, Belém, Brazil; MZUSP = Museu de Zoologia da Universidade de São
Paulo, São Paulo, Brazil; STRI = Smithsonian Tropical Research Institute, Balboa, Panamá.
b When specimens have not been catalogued, collector or field numbers are provided.
c Tentative subspecific identification because of incomplete locality data or questionable taxon diagnosis.
d No voucher specimen collected.
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APPENDIX  2: COLLECTING LOCALITIES, SAMPLE SIZES, AND VOUCHER
INFORMATION FOR POPULATIONS AND SPECIMENS OF XIPHORHYNCHUS
SPIXII AND XIPHORHYNCHUS ELEGANS. NUMBERS ABOVE COLLECTING

LOCALITIES REFER TO AREAS ON MAP IN FIGURE 3.2. SUBSPECIFIC
IDENTIFICATIONS BASED ON VOUCHER’S PHENOTYPIC (MOSTLY PLUMAGE)

CHARACTERS

______________________________________________________________________________
______________________________________________________________________________

Xiphorhynchus spixii

1
Brazil: Pará, 40 km NE Belém, 01º12´S, 48º14´W
(n = 3)
LSUMZ a 35542 b

LSUMZ 35541
MPEG 49271 c

2
Brazil: Pará, Ipixuna
(n = 1)
MPEG 51965 c

3
Brazil: Pará, Serra dos Carajás
(n = 1)
FMNH CA 088

4
Brazil: Pará, Estação Ecológica de Caxiuanã
(n = 2)
FMNH SA 047
FMNH SA 012

5
Brazil: Pará: Santana do Araguaia, Fazenda Fartura
(n = 4)
MPEG 48644 c

MPEG 48645 c

MPEG 48647 c

MPEG 48648 c
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6
Brazil: Mato Grosso: S. bank of Rio Cristalino, 33 km NE of Alta Floresta, 09º37´S, 55º55´W
(n = 5)
LSUMZ 35438
LSUMZ 35447
LSUMZ 35513
LSUMZ 35514
LSUMZ 35455

7
Brazil: Pará: 126 km NW of Alta Floresta, S. bank of Rio São Benedito, 09º06´S, 56º56´W (n = 5)
LSUMZ 35282
LSUMZ 35294
LSUMZ 35287
LSUMZ 35313
LSUMZ 35314

Xiphorhynchus elegans elegans

8
Brazil: Mato Grosso: W. bank of Rio Teles Pires, 32 km NE of Alta Floresta
(n = 6)
LSUMZ 35347
LSUMZ 35472
LSUMZ 35490
LSUMZ 35495
LSUMZ 35496
LSUMZ 35516

9
Bolivia: depto. Santa Cruz: prov. Velasco: W. bank Río Paucerna, 4 km upstream from Río Itenez
(n = 5)
LSUMZ 12785
LSUMZ 12962
LSUMZ 12825
LSUMZ 12713
LSUMZ 12685



127

10
Brazil: Rondônia: REBIO Ouro Preto, ca. 70 km E. Guajará-Mirim
(n = 6)
LSUMZ 31384
LSUMZ 36796
LSUMZ 36772
LSUMZ 36745
LSUMZ 36731
LSUMZ 36649

11
Brazil: Amazonas: Fazenda Toshiba, 8 km NE Careiro; 03º47´S, 60º17´W
(n = 5)
LSUMZ 35655
LSUMZ 35647
LSUMZ 35648
LSUMZ 35649
LSUMZ 35656

Xiphorhynchus elegans juruanus

12
Brazil: Rondônia: 50 km NW of Jaci Paraná, W. bank of Rio Madeira
(n = 1)
LSUMZ 31332

13
Bolivia: depto. Pando: prov. Nicolas Suarez, 12 km S. of Cobija, 8 km W on road to Mucden
(n = 5)
LSUMZ 9116
LSUMZ 9090
LSUMZ 9076
LSUMZ 8891
LSUMZ 8846

14
Brazil: Amazonas: Margem S Rio Solimões, 13.5 km E São Paulo de Olivença; 03º27´S, 68º49´W
 (n = 5)
LSUMZ 35707
LSUMZ 35709
LSUMZ 35710
LSUMZ 35711
LSUMZ 35712
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15
Peru: depto. Ucayali: W. bank of Río Shesha, 65 km ENE Pucallpa
(n = 5)
LSUMZ 10600
LSUMZ 10599
LSUMZ 10597
LSUMZ 10562
LSUMZ 10536

16
Peru: depto. Loreto: S. Río Amazonas, ca 10 km SSW mouth Río Napo
(n = 1)
LSUMZ 4607

Xiphorhynchus elegans insiginis

17
Peru: depto. Loreto: NE bank Río Cushbatay, 84 km WNW Contamana, 07º09´S, 75º44´W
(n = 5)
LSUMZ 27406
LSUMZ 27459
LSUMZ 27460
LSUMZ 27550
LSUMZ 27620

18
Peru: depto. Loreto: S. bank Maranon river along Samiria river, est. biol. Pithecia
(n = 2)
LSUMZ 103543
LSUMZ 103554

Xiphorhynchus elegans ornatus

19
Peru: depto. Loreto, ca. 54 km NNW mouth Río Morona on W bank, 140 m, 04º16´S, 77º14´W
(n = 4)
LSUMZ 42758
LSUMZ 42841
LSUMZ 42949
LSUMZ 42729
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20
Peru: depto. Loreto: Lower Río Napo region, E. bank Río Yanayacu, ca. 90 km N. Iquitos
(n = 7)
LSUMZ 4171
LSUMZ 4198
LSUMZ 4212
LSUMZ 4165
LSUMZ 4193
LSUMZ 7179
LSUMZ 2750

21
Ecuador: Napo, Río Pacayacu, 6 km up from Río Aguarico
(n = 1)
ANSP 4783

22
Brazil: Amazonas: Margem N Rio Solimões, ca. 4.5 km NE São Paulo de Olivença; 03º25´S,
68º57´W
(n = 1)
LSUMZ 35681

a Voucher and tissue institutions. ANSP = Academy of Natural Sciences, Philadelphia; FMNH =
Field Museum of Natural History, Chicago; LSUMZ = Louisiana State University Museum of
Natural Science, Baton Rouge; MPEG = Museu Paraense Emílio Goeldi, Belém, Pará, Brazil.
b Tissue number.
c Sequences obtained from dry skin samples.
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APPENDIX 3: COLLECTING LOCALITIES, SAMPLE SIZES, AND VOUCHER
INFORMATION FOR POPULATIONS AND SPECIMENS OF XIPHORHYNCHUS

KIENERII AND XIPHORHYNCHUS OBSOLETUS. NUMBERS ABOVE COLLECTING
LOCALITIES REFER TO AREAS ON MAPS IN FIGURES 4.1 AND 4.2

______________________________________________________________________________
______________________________________________________________________________

Xiphorhynchus kienerii

1
Brazil: Pará: Lago do Maicá; 11.3 km SE Santarém; Margem S Rio Amazonas; 02º28´S, 54º38´W
(n = 4)
LSUMZ a 35627 b

LSUMZ 35628
LSUMZ 35630
LSUMZ 35632

2
Brazil: Amazonas: Rio Amazonas, Ilha do Carreiro, ca. 20 km E Manaus
(n = 1)
LSUMZ 25413

3
Brazil: Amazonas: Igarapé Panelão, 6 km W Careiro; 03º50´S, 60º30´W
(n = 3)
LSUMZ 35658
LSUMZ 35659
LSUMZ 35662

4
Brazil: Amazonas: Novo Airão, Anavilhanas
(n = 1)
LSUMZ 20237

5
Brazil: Amazonas: Parque Nacional do Jaú, Ilha do Caroçal (island at the mouth of the Jaú river)
(n = 1)
LSUMZ 20237
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6
Brazil: Amazonas: Maraã, S Bank of Rio Japurá
(n = 4)
MPEG c 43117
MPEG c 43114
MPEG c 43115
MPEG c 43116

7
Brazil: Amazonas: N. bank of the Amazon river, ca. 4.5 km NE São Paulo de Olivença; 03º25´S,
68º57´W
(n = 4)
LSUMZ 35692
LSUMZ 35693
LSUMZ 35723
LSUMZ 35724

8
Peru: Loreto Department: River island 8 km downstream from Iquitos in Río Amazonas, 03º41´S,
73º12´W
(n = 3)
LSUMZ 29022
LSUMZ 29023
LSUMZ 29016

Xiphorhynchus obsoletus

1
Brazil: Pará: Belém, Mata do Mocambo, EMBRAPA
(n = 1)
LSUMZ 35670

2
Brazil: Pará: 113 km SWW Santarém; Alto Rio Arapiuns; 02º44´S, 55º41´W
(n = 5)
LSUMZ 35585
LSUMZ 35620
LSUMZ 35592
LSUMZ 35593
LSUMZ 35595
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3
Brazil: Pará: Island on the Rio Teles Pires, 6.1 km downriver from the mouth of Rio São
Benedito, 09º02´S, 57º05´W
(n = 1)
LSUMZ 35388

4
Brazil: Mato Grosso: W. bank of Rio Teles Pires, 33 km NE of Alta Floresta
(n = 1)
LSUMZ 35501

5
Bolivia: depto. Santa Cruz: prov. Velasco; W. bank Río Paucerna, 4 km upstream from Río Itenez
(n = 5)
LSUMZ 12752
LSUMZ 12934
LSUMZ 12885
LSUMZ 12740
LSUMZ 12729

6
Brazil: Amazonas: Igarapé Panelão, 6 km W Careiro; 03º50´S, 60º30´W
(n = 1)
LSUMZ 35660

7
Brazil: Amazonas: ca. 4.5 km NE São Paulo de Olivença; 03º25´S, 68º57´W
(n = 5)
LSUMZ 35682
LSUMZ 35683
LSUMZ 35690
LSUMZ 35691
LSUMZ 35732

8
Ecuador: Sucumbíos; Imura Cocha
(n = 3)
ANSP 3231
ANSP 3174
ANSP 3183
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9
Peru: depto. Loreto: Lower Río Napo region, E. bank Río Yanayacu, ca. 90 km N. Iquitos
(n = 3)
LSUMZ 4396
LSUMZ 4361
LSUMZ 4192

10
Guyana: Iwokrama Reserve, Kabocalli Landing, 04º17´N, 58º31´W
(n = 5)
ANSP 7965
ANSP 8212
ANSP 8572
ANSP 8569
ANSP 8688

a Voucher and tissue institutions. ANSP = Academy of Natural Sciences, Philadelphia; LSUMZ
= Louisiana State University Museum of Natural Science, Baton Rouge; MPEG = Museu
Paraense Emílio Goeldi, Belém, Pará, Brazil.
b Tissue number.
c Sequences obtained from dry skin samples.
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