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Natural products are continually explored in the development of new bioactive

compounds with industrial applications, attracting the attention of scientific research

efforts due to their pharmacophore-like structures, pharmacokinetic properties, and

unique chemical space. The systematic search for natural sources to obtain valuable

molecules to develop products with commercial value and industrial purposes remains

the most challenging task in bioprospecting. Virtual screening strategies have innovated

the discovery of novel bioactive molecules assessing in silico large compound

libraries, favoring the analysis of their chemical space, pharmacodynamics, and

their pharmacokinetic properties, thus leading to the reduction of financial efforts,

infrastructure, and time involved in the process of discovering new chemical entities.

Herein, we discuss the computational approaches and methods developed to explore

the chemo-structural diversity of natural products, focusing on the main paradigms

involved in the discovery and screening of bioactive compounds from natural sources,

placing particular emphasis on artificial intelligence, cheminformatics methods, and big

data analyses.

Keywords: machine learning, big data, natural products, bioprospecting, cheminformatics, virtual screening, drug

discovery, chemical data

NATURAL PRODUCTS AS SOURCES OF NOVEL BIOACTIVE
COMPOUNDS AND THE PARADIGMS OF THEIR EXPLORATION

The high structural and physicochemical diversity of natural products makes them a valuable
source to discover and develop new bioactive compounds with different pharmaceutical, cosmetic,
biotechnological, agrochemical, and food applications (Rayan et al., 2017). Success histories of
natural product-based drugs have been reported in the pharmaceutical industry and include
pilocarpine, quinine, morphine, and artemisinin (Newman and Cragg, 2016; Zhang L. et al.,
2020). Natural products represent relevant importance in the discovery and development of new
bioinspired bioactive compounds, and more than 50% of the developed drugs approved by the
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GRAPHICAL ABSTRACT | Assessment of the chemo-structural space of natural products using in silico tools.

United States Food and Drug Administration (USFDA, 1981–
2019) are derived or bioinspired from compounds obtained from
natural sources (Newman and Cragg, 2020). Natural products
are chemically complex and differ from synthetic compounds in
different aspects; as an example, these structures contain a high
percentage of oxygen as well as a larger fraction of sp3-hybridized
atoms and chiral centers (Lee and Schneider, 2001; Feher and
Schmidt, 2003; Rodrigues et al., 2016), and their chemical space
is highly diverse, containing different structural scaffolds, when
compared with synthetic compound libraries (Chen et al., 2018).
Due to their unique features, their structures can provide an
innovative solution for the design and synthesis of new bioactive
compounds (Kumar et al., 2017; Silva et al., 2019; Bradley et al.,
2020; Morais et al., 2020).

The systematic search for natural sources to obtain valuable
compounds to develop products with commercial value and
industrial purposes remains the most challenging task in
bioprospecting (Skirycz et al., 2016; Roumpeka et al., 2017;
Cubillos et al., 2019). The traditional approach to discover
new bioactive compounds from natural sources includes
sequential steps that are obtained from the biological material
using ethnological knowledge, extraction, fractionation/isolation,
chemical characterization, and, finally, the execution of the
biological assays of the isolated or fractionated natural products
(Zhang L. et al., 2020). Subsequent analyses include the
lead compound optimization using chemical synthesis to
perform structural modifications in order to improve their
pharmacodynamic and pharmacokinetic properties and to
increase their biological activities (Huffman and Shenvi, 2019). In
contrast, bioprospecting strategies that use computational tools

have been reported as efficient, low-cost, low-labor, and low-time
approaches when compared to experimental methods that use
solely in vitro and in vivo assays (Li and Vederas, 2009; Wingert
and Camacho, 2018; Trujillo-Correa et al., 2019).

Despite natural products being continually explored in drug
development programs, attracting the attention of scientific
research efforts due to their pharmacophore-like structures,
pharmacokinetic properties, and unique chemical space, the big
pharma industry has focused on cutting-edge technologies that
combine high-throughput screening and combinatory chemistry
methods to obtain and evaluate synthetic compound libraries
(Henninot et al., 2018; Batool et al., 2019). This decision is,
in part, a consequence of the complex structures of natural
products that impose limitations in synthetic routes and due
to the time-consuming and laborious process involved in the
isolation of a single chemical constituent, which often requires
a significant amount of reagents and adequate infrastructure,
obtaining low yields of purified target compounds (Huffman
and Shenvi, 2019). Based on these limitations, the isolation and
the characterization of compounds from natural sources have
been indicated only for those with potential applications and
desirable biological activities (Olivon et al., 2017). However,
it has been suggested that the reduced new chemical entities
found by the pharmaceutical industry that reach the final market
could be due to the strategic decision to prioritize combinatorial
synthetic libraries instead of natural product-based libraries
(Over et al., 2013; Rodrigues, 2017). Currently, we are witnessing
a resurgence of natural products in the development and
research of novel bioactive compounds; besides, some structural
scaffolds obtained from different classes of natural products,
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such as alkaloids, phenylpropanoids, polyketides, and terpenoids,
have served as an inspiration to design new drug candidates
(Thomford et al., 2018; Davison and Brimble, 2019; Galúcio
et al., 2019; Li et al., 2019). Natural products remain inspiring
the development of new drugs, cosmetics, and other bioactive
compounds for human use (Newman and Cragg, 2020; Atanasov
et al., 2021).

Recently, metabolomics and metabolic profiling approaches
have explored novel taxonomic groups from the unique
environment, providing opportunities for finding novel natural
bioactive compounds, and some examples include bacteria
(Kleigrewe et al., 2015; Gosse et al., 2019), cnidaria (Santacruz
et al., 2020), marine sponge (Abdelhameed et al., 2020), insects
(Klupczynska et al., 2020), and fungi (Oppong-Danquah et al.,
2018). Special attention has been given to novel chemical
entities that originated from marine environments due to
their diverse and unique drug-like scaffolds (Shang et al.,
2018) and physicochemical properties (Jagannathan, 2019) when
compared with natural products of terrestrial origin, which make
them a valuable source for exploration by the pharmaceutical
and biotechnological industries. Advances in the experimental
methods applied in metabolomic approaches coupled with
computational methods have been useful to identifying new
natural products with plausible biological activities as well as to
understanding their molecular mechanisms of action (Atanasov
et al., 2021).

Currently, artificial intelligence algorithms (Wolfe et al.,
2018; Lima et al., 2020; Stokes et al., 2020) and omics-based
technologies (Floros et al., 2016; Huang et al., 2017; Jones and
Bunnage, 2017; Merwin et al., 2020) have emerged as approaches
to characterize and select interesting chemo-structures with
appropriate physicochemical properties and biological activities
as well as to prioritize the isolation of natural compounds
from biological sources (Chen et al., 2018; Wolfender et al.,
2019), which open up new opportunities to explore their
industrial applications. Combined with other in silico analyses,
artificial intelligence and cheminformatics methods can screen
a high diversity of chemo-structures isolated from natural
sources or deposited in public databases (Chen and Kirchmair,
2020), analyzing their bioactivity, pharmacodynamics, and their
pharmacokinetic properties, thus reducing the financial efforts
involved in research programs that aim to find new chemical
agents (Chen et al., 2018; Al Sharie et al., 2020; Medina-Franco
and Saldívar-González, 2020).

In this review, we discuss the computational approaches
and methods applied to explore the chemo-structural diversity
of natural products, giving particular attention to the main
paradigms involved in the discovery and screening of bioactive
natural compounds with different industrial applications (e.g.,
herbicides, insecticides, etc.) that are beyond the discovery of
new drugs. Here, we emphasize computational strategies that
use artificial intelligence, cheminformatics, and big data analyses
that have been developed in the last years. We also explore
the limitations and biases of these methods and demonstrate
practical applications to evaluate the chemical entities obtained
from natural sources aiming at bioprospecting.

COMPUTATIONAL APPROACHES APPLIED
IN THE VIRTUAL SCREENING OF
BIOACTIVE COMPOUNDS

Virtual screening methods have innovated the discovery of new
compounds with specific bioactivity, assessing in silico large
structural libraries against a bioreceptor or biological system,
thus favoring the reduction of financial efforts, infrastructure,
and the time involved in the process of discovering new
chemo-structures (Macalino et al., 2015). These methods apply
sequential and hierarchical steps that aim at filtering and selecting
compounds with desirable physicochemical, pharmacokinetic,
and pharmacodynamic properties while discarding those that do
not fit the desirable characteristics. A virtual screening workflow
comprises two main computational tasks (Figure 1A): (1) the
first one is the library preparation, which includes, among other
computational tasks, obtaining the structures of the compounds,
file conversion to readable formats, such as SMILES (simplified
molecular-input line entry system), SDF (structure data file),
and MOL2 (MDL Molfile) (Saldívar-González et al., 2020),
conformer generation, and the correction of stereochemical
and valence errors (Ropp et al., 2019); (2) the second one
corresponds to the application of computational techniques
to filter the desirable compounds (Gimeno et al., 2019). The
final step corresponds to experimental validation using in vitro
and in vivo assays, which include enzymatic inhibition assays
and/or cell line inhibition (Spyrakis et al., 2019; Ye et al.,
2019).

Different computational methods have been developed over
the years and implemented in virtual screening strategies
(Tomar et al., 2018), applying knowledge of artificial intelligence
(Gupta et al., 2013; Yang et al., 2018; Schaduangrat et al.,
2019; Shoombuatong et al., 2019; Kong et al., 2020), molecular
modeling (Semighini et al., 2011; Rampogu et al., 2018; Da
Costa et al., 2019; Jin et al., 2020; Mascarenhas et al., 2020),
statistics, and probability (Pire et al., 2015; Daina and Zoete,
2016; Blanco et al., 2018; Madzhidov et al., 2020; Cai et al., 2021).
These methods, when combined with experimental approaches,
increase the success to finding novel bioactive compounds
(Kumar and Zhang, 2015; Coimbra et al., 2020; Gorgulla et al.,
2020; Stokes et al., 2020). Two computational approaches are
related to the virtual screening of compounds: (1) the ligand-
based virtual screening (LBVS) and (2) structure-based virtual
screening (SBVS) approaches (Figure 1B). Both computational
approaches have been combined in virtual screening strategies
that aim to identify novel bioactive compounds against a specific
molecular target or a biological system (Da Costa et al., 2019;
Galúcio et al., 2019; Wang et al., 2020).

The LBVS approach depends solely on the analyses of
the intrinsic characteristics of the compound structure, such
as the electronic, topological, physicochemical, and structural
properties that are related to its molecular activity using, as a
starting point, a set of compounds with experimentally proven
biological activity (Hamza et al., 2012; Berenger et al., 2017;
Garcia-Hernandez et al., 2019). Computational methods applied
in the LBVS approach include structural-, three-dimensional
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FIGURE 1 | (A) Sequential steps applied in virtual screening workflows to select bioactive natural products. (B) Ligand- and structure-based virtual screening

approaches and some of their associated computational methods.

(3D) shape-, and fingerprint-based similarity search methods,
cheminformatics filters, machine learning algorithms, ligand-
based pharmacophore modeling, and quantitative structure–
activity relationship (QSAR) methods (Yan et al., 2016;
Tahir et al., 2020). In contrast, the SBVS approach uses,
as a starting point, information related to the molecular
recognition of the ligand in the bioreceptor structure to design
and discover new bioactive compounds. This information
includes bioreceptor conformation, the ligand-binding affinity,
intermolecular interactions, molecular surface charge, and the
composition of the residue of the binding site (Gonczarek
et al., 2018; Guedes et al., 2018; Yasuo and Sekijima, 2019;

Maia E. H. B. et al., 2020). These methods require the
elucidated 3D structure of the receptor and, preferably, in
complex with the bioactive compound. The 3D structure
informs the structural conformation and molecular binding
site of the bioactive ligands. Among the computational
methods applied in the SBVS approach, we can cite molecular
docking, molecular dynamics simulation, and structure-based
pharmacophore modeling (Wang et al., 2020). Currently, virtual
screening methods are an integral part of the design and
discovery process of new bioactive compounds, and their
applications have become popular in the academia and industry
(Kar and Roy, 2013).
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COMPUTATIONAL METHODS APPLIED IN
VIRTUAL SCREENING APPROACHES

Cheminformatics Filters (Molecular Filters)
The prediction of the pharmacokinetics and drug-likeness
properties of chemical entities represents an important task for
the discovery of structures with interesting biological activity
(Mignani et al., 2018). In essence, drug-likeness represents a
measure of the overall similarity of the analyzed compounds to
a chemical space occupied by known drugs (Mignani et al., 2018;
Jia et al., 2020).

The prediction of the chemical properties of compounds
usually involves the application of a set of simple empirical
chemical rules (Gfeller et al., 2014; Lagorce et al., 2015; Daina
and Zoete, 2016). Over the years, different cheminformatics
filters (also known as molecular filters) have been developed
as useful tools to screen structures that have desirable
pharmacokinetic and pharmacodynamic properties, low toxicity,
and/or low promiscuity/reactivity in inhibition assays, thus
guiding the decision-making process in the discovery of new
chemical entities with pharmaceutical, cosmetic, agrochemical,
and biotechnological interest (Huggins et al., 2011). The most
commonly used filters are intended to remove from structural
libraries the compounds with low cell membrane permeability
or distribution. Among the well-known cheminformatics filters,
we can cite those developed by Lipinski (Lipinski et al., 1997),
Veber (Veber et al., 2002), and Jeffrey (Jeffrey and Summerfield,
2010). Some structural properties evaluated by these molecular
filters predict some pharmacodynamic properties, such as
compound promiscuity, i.e., their non-selectivity against a
molecular target (Walters and Namchuk, 2003; Lovering,
2013). Some filters are based on the selection of a range of
physicochemical and structural properties that are representative
of specific pharmacokinetics (e.g., gastrointestinal absorption or
penetration into the blood–brain barrier) and pharmacodynamic
properties (e.g., specificity or promiscuity to a macromolecular
target). These properties are selected using a statistical cutoff
(e.g., 90th percentile limit) for each molecular descriptor that is
representative to explain the interesting feature of the analyzed
compounds (Daina and Zoete, 2016).

Since the first report of the chemical rules elected by Lipinski
et al. (1997)—also known as the rule of five (RO5) and
Pfizer rules—different chemical extensions to these chemical
properties have been developed over the years to better define
the “drug-like” features and bioavailability of compounds (Doak
et al., 2014). More recently, hybrid methods that combine
some counting schemes similar to Lipinski’s rules with a set of
functional groups identified as reactive, toxic, and problematic
moieties have also been developed to eliminate promiscuous
structures from the high-throughput screening assays (Walters
and Murcko, 2002; Bruns and Watson, 2012). Filters have also
been developed to screen fragment-based chemical libraries (rule
of three, RO3) (Jhoti et al., 2013). Similar to filters developed
for drugs, molecular filters have also been developed to select
herbicide-, fungicide-, and insecticide-likeness due to their
applications in the agrochemical industry (Tice, 2001; Avram
et al., 2014).

Despite these molecular filters having been widely applied
in virtual screening approaches to select natural products
from large chemo-structural libraries (Thireou et al., 2018;
Da Costa et al., 2019; Galúcio et al., 2019), caution must
be taken to avoid remotion of the chemo-structures with
appropriate bioavailability (Shultz, 2019). Most natural products
break some chemical rules applied in molecular filtering;
furthermore, some chemical classes of compounds, such
as peptides and polyketides (e.g., macrolides), are located
beyond the chemical limits determined by the rule of five
(beyond the rule of five, bRO5) (Doak et al., 2014; Naylor
et al., 2017; Rossi Sebastiano et al., 2018). Contrasting to
the drug-likeness, the natural product-likeness concept has
been developed to measure the overall molecular diversity
of the natural product space, and it has been used as a
selection criteria to screen substructures for the prioritization
of combinatorial synthesis, aiming at novelty and the easy
design of building blocks (Ertl et al., 2008; Jayaseelan et al.,
2012). Currently, there are a great variety of cheminformatics
programs that calculate these chemical properties that compose
the cheminformatics filters, including the open-source programs
Osiris DataWarrior [operating system (OS) compatibility:
Linux/MS-Windows/Mac OS] (Sander et al., 2015) and RDKit
(OS compatibility: Linux/MS-Windows/macOS) (Lovrić et al.,
2019), and some commercial solutions, such as Instant JChem
(OS compatibility: Linux/MS-Windows/macOS) (Instant JChem
21.4.0, 2021). Similar to these applications, the FAF-Drugs4
web server also predicts some chemical properties to screen
structures from large compound libraries using some in-
house cheminformatics filters, such as the Drug-Like Soft
and Lead-Like Soft that predict compound similarity to drugs
and leads, respectively (Miteva et al., 2006). Some databases
also offer online tools to evaluate the drug-likeness and
natural product-likeness (Sorokina and Steinbeck, 2019; Jia
et al., 2020). Table 1 exhibits an overview of the main
molecular filters applied to screen natural products from
chemical libraries.

Molecular Fingerprint-Based Methods
Similarity search methods applied in the screening of natural
products are based on the premise that molecules with similar
structures have similar biological activities (Cereto-Massagué
et al., 2015). These methods have been applied to evaluate natural
compound similarities, their bioactivity (Muegge andMukherjee,
2016), and potential molecular targets (Huang et al., 2018).

Molecular fingerprint-based methods use representations of
chemical structures to allow the quantitative assessment of
the pairwise similarity of compounds with computationally
efficient calculations (Riniker and Landrum, 2013; Bajusz et al.,
2015). Molecular fingerprints are binary representations (bits)
of a chemical structure in which 1 (present) denotes the
existence of a certain molecular feature and 0 (absent) denotes
inexistence (Rácz et al., 2018). Figure 2A shows a schematic
view of the binary representation of a molecular fingerprint
of a compound structure. Molecular fingerprints can vary
greatly concerning the applied molecular descriptors, and some
of them are based solely on the chemical structure, such as
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TABLE 1 | Structural and physicochemical properties present in some cheminformatics filters applied in virtual screening.

MW (Da) PSA (A2) HBA HBD cLogP/cLogD RTB NAR Formal charge References

Lipinski’s rule (RO5) ≤500 – 0–10 0–5 ≤5 – – – Lipinski et al., 1997

Ghose’s rule 160–480 – – – −0.4 to +5.6 – 20–70 – Ghose et al., 1999

Oprea’s drug-like rule – – 2–9 0–2 – 2–8 – – Oprea, 2000

Walters 200–500 ≤120 0–10 0–5 – 0–8 – – Walters and Murcko, 2002

Veber’s rule – ≤140 – – – 0–10 – – Veber et al., 2002

REOS 200–500 – 0–5 −5.0 to 5.0 0–8 −2 to +2 Walters and Namchuk, 2003

Beyond rule of five (bRO5) ≤1,000 <250 <15 ≤6 −2 to 10 ≤20 – – Doak et al., 2014

Congreve’s rule (RO3) <300 – ≤ 6 ≤3 ≤3 – – – Congreve et al., 2003

Herbicide-likeness 150–500 – 2–12 < 3 ≤3.5 <12 – – Tice, 2001

Insecticide-likeness 150–500 – 1–18 ≤ 2 0–5 <12 – – Tice, 2001

Hao’s rule (pesticide-likeness) ≤435 – ≤6 ≤ 2 ≤6 ≤9 ≤17 – Hao et al., 2011

MW, molecular weight; PSA, polar surface area; HBD, hydrogen bond donor; HBA, hydrogen bond acceptor; RTB, rotatable bonds; NAR, number of aromatic rings.

topological distances and the presence/absence of functional
groups (Cereto-Massagué et al., 2015). However, some molecular
fingerprints use information from pharmacophore models,
allowing the comparison of the ligand poses (pharmacophore
fingerprints) (Wood et al., 2012). Some molecular fingerprints,
such as SMILES fingerprint (SMIfp) (Schwartz et al., 2013),
and structural interaction fingerprint (SIFt) (Deng et al., 2004),
evaluate structural features related to intermolecular interactions,
such as hydrophobic contacts, polar interactions, and hydrogen
bond acceptors and donors (interaction fingerprints) (Desaphy
et al., 2013). Considering that natural products are chemically
complex and structurally different from the synthetic libraries,
the analyses of their structures using molecular fingerprints
can provide insights, evidencing some structural similarities
(see example in Figure 2B) (Gu et al., 2013; Tao et al., 2015;
Floros et al., 2016; Galúcio et al., 2019; Chávez-Hernández et al.,
2020).

Molecular fingerprints offer a cost-efficient computational
calculation to be implemented with other computational
approaches. Molecular fingerprints have been widely applied
in the representation of chemical space networks to evaluate
the structural similarities of natural products (see example
in Figure 2C) (Zhang et al., 2015) as well as in hierarchical
clustering methods (Figure 2D) (Sánchez-Cruz and Medina-
Franco, 2018). In chemical network representations, the nodes
(vertices) represent the analyzed compounds and edges of
the pairwise fingerprint similarity relationships calculated by
a structural metric. The edge drawn between a pair of
nodes uses a satisfying threshold criterion for the structural
similarity value (e.g., a cutoff = 0.7) between the analyzed
compounds (Maggiora and Bajorath, 2014; Kunimoto and
Bajorath, 2018). The investigation of the chemical space
of natural products is an intelligent way to identify some
classes of compounds, their bioactivity, and the structural
scaffolds present in known active compounds (Opassi et al.,
2018). Due to the high diversity of the derived structures
of natural products containing modified functional groups;
different strategies have been applied to investigate their chemical
space, which include the modeling of hypothetical structural

modification (Skinnider et al., 2017) and the application
of less restrictive similarity-based cutoffs (Pavadai et al.,
2017).

Recently, machine learning algorithms using MACCS
keys and Morgan molecular fingerprints have been used to
differentiate natural products from synthetic molecules. The
authors also used similarity maps to classify natural product
substructures according to their similarity to natural or synthetic
compounds (Chen et al., 2019). Galúcio et al. (2019) used
fingerprint-based similarity to find correspondences between
natural products and FDA-approved anticancer drugs, and
the authors identified an interesting correspondence (see
Figure 2B) between the bisdethiobis(methylthio)gliotoxin
obtained from bacterial strain and the FDA-approved anticancer
drug mitomycin.

Several programs and web servers have been developed to
compute molecular fingerprints, and among them, we can cite
ChemDes (web server) (Dong et al., 2015), ChemoPy (open-
source Python package) (Cao et al., 2013), PaDEL (open-source
Java program) (Yap, 2011), and jCompoundMapper (open-
source Java program) (Hinselmann et al., 2011).

Similarity and Distance Metrics
Structural similarity is a key concept in the discovery of
new bioactive compounds from natural sources due to the
assumption that similar compounds perform similar molecular
activities. Different similarity and distance metrics have been
applied to compare molecular fingerprints (Bajusz et al., 2015);
some of them are available in cheminformatics tools, such as
Konstanz Information Miner (KNIME) (Berthold et al., 2009),
PyBel (O’Boyle et al., 2008), the Chemistry Development Kit
(CDK) (Willighagen et al., 2017), and RDKit (Lovrić et al.,
2019). Similarity metrics could use two-dimensional (2D) or
3D similarities of compounds, but studies have demonstrated
that the 2D similarity coefficient neglects some important
structural/functional features in the identification of the target
compound (Gohlke et al., 2015; Kim et al., 2016).
Several similarities and distance metrics have been applied
to compare the pairwise similarities of molecules and their
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FIGURE 2 | (A) Schematic representation of bits applied in the molecular fingerprints of chemical structures. (B) Fingerprint-based similarity of the natural compound

bisdethiobis (methylthio)gliotoxin and the FDA-approved anticancer drug mitomycin (Galúcio et al., 2019). (C) Schematic view of the chemical space network and (D)

hierarchical clustering that apply fingerprint-based descriptors to analyze natural compounds.

TABLE 2 | Structural similarity and distance metrics applied in virtual screening.

Similarity and distance metrics Equations for dichotomous variables

Cosine coefficient SA,B = c/[ab]1/2

Dice coefficient SA,B = 2c/[a+ b]

Tanimoto coefficient SA,B = c/[a+ b− c]

Tversky coefficient SA,B = c/[αa+ βb− c]

Soergel distance DA,B = 1−
c

a+b−c

Manhattan distance DA,B = a+ b− 2c

Euclidean distance DA,B = [a+ b− 2c]1/2

substructures (Bajusz et al., 2015; O’Hagan and Kell, 2016; Rácz
et al., 2018). Table 2 exhibits the main similarity coefficients
and their dichotomous equations applied to compare molecular
fingerprints, where a correspond to on bits (presence) in
structure A, b is the number of the on bits in structure B,
while c corresponds to bits that are on in both molecular
structures. Differently from other similarity metrics, Tversky is
an asymmetric coefficient that has two user-defined parameters,
α and β . If α is set to 1 and β is set to 0, the Tversky coefficient
will measure the substructural similarity between two molecules,
where a Tversky value equal to 1 indicates that a given structural

moiety is a substructure of the compared compound (Senger,
2009).

Tanimoto has been the most used similarity coefficient in
fingerprint-based similarity in virtual screening strategies, and its
results have been described, in some cases, as equivalent to other
similarity metrics applied to compare two molecules, such as
Soergel, Dice, and Cosine, while the similarity measures derived
from Euclidean and Manhattan distances have been described as
unsatisfactory (Bajusz et al., 2015; Rácz et al., 2018). However,
the Tversky coefficient has been indicated to compare moieties of
natural products or non-symmetrical scaffolds seeking to identify
drug-like similarities (O’Hagan and Kell, 2016). Tanimoto and
Tversky coefficient values range from 0 to 1, where values close
to 1 correspond to a high similarity between the two analyzed
molecules and values close to 0 represent a low similarity (Senger,
2009; Bajusz et al., 2015).

Ligand-Based and Structure-Based
Pharmacophore Modeling
A pharmacophore model consists of a set of chemical groups
with a specific 3D arrangement that are involved in biological
activity against a specific molecular target (Schaller et al.,
2020). The functional characteristics present in a pharmacophore
model include hydrogen bond acceptors, hydrogen bond donors,
hydrophobic groups, positive or negative ionizable groups,
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and coordination with metal ions (Vuorinen and Schuster,
2015; Schaller et al., 2020). The binding sites of ligands have
physicochemical and spatial restrictions that impose limitations
to the non-specific interaction of certain molecules, such as
the physicochemical properties of the amino acid residue
composition, the volume, and the shape of the cavity. These
spatial restrictions dictate the binding mode of the ligands, thus
allowing different molecules, even with different structures, to act
against a specific bioreceptor due to the presence of the same
pharmacophore model (Vuorinen and Schuster, 2015).

Pharmacophore modeling has been extensively applied in
virtual screening, lead compound optimization strategies, and
de novo drug design strategies (Akram et al., 2017; Azminah
et al., 2019; Da Costa et al., 2019; El Kerdawy et al., 2019; Jade
et al., 2020). Two computational approaches are distinguished
in pharmacophore modeling: (1) ligand-based and (2) structure-
based approaches. To predict the pharmacophore model, the
ligand-based methods use 3D alignment to obtain the chemical
information (e.g., shape, functional groups, etc.), shared by a set
of active compounds, and select the functional groups that are
relevant for the interaction of the ligandwith themacromolecular
target (Pal et al., 2019). In contrast, the structure-based approach
uses the spatial information of the ligand complexed with the
molecular target (e.g., ligand poses, conformations, etc.); thus,
this approach is applied only in the presence of experimentally
elucidated structures of the molecular targets (e.g., by X-ray
crystallography) complexed with an active ligand (Jiang et al.,
2020).

The ligand-based pharmacophore-based virtual screening
comprises different stages: (1) selection of the active compounds
validated experimentally; (2) generation of the 3D conformation
of the ligands, followed by their structural alignment; (3)
identification of the structural characteristics and functional
groups involved in molecular recognition; (4) generation and
validation of the pharmacophore model using a compound
library as a testing dataset; and (5) screening of the natural
product library (Figure 3).

In ligand-based pharmacophore modeling, the
pharmacophore model is generated using a 3D alignment
of the conformers of a set of bioactive compounds (training
dataset). Then, active (true-positive compounds or hits) and
inactive compounds (false-positive compounds or decoys) are
used as a testing dataset to validate the pharmacophore model
(Shahin et al., 2016; Pal et al., 2019). It is important to note that,
despite the choice of strict pharmacophore models leading to
the selection of compounds with better activities against the
molecular target, it also could reduce the structural diversity
of the analyzed natural products. In contrast, the choice of less
restrictive models could retrieve a larger number of false-positive
compounds (Schaller et al., 2020).

Pharmacophore modeling methods could be divided into two
scoring function methods to predict the fitness of the analyzed
compounds to the predicted pharmacophore models: the root of
the mean square deviation (RMSD)-based and the overlay-based
scoring function (Sanders et al., 2012). In RMSD-based methods,
the distances between the functional groups of the compounds to
the center of pharmacophore features are used to assess the fitness
of the compounds concerning the predicted pharmacophore
model. In contrast, the overlay-based methods use the radii of
the functional groups and/or atoms to estimate the functional
similarity of the structures with the pharmacophore model
(Vuorinen and Schuster, 2015). Pharmacophore-based methods
that apply RMSD-based scoring functions are better at predicting
the ligand poses than the overlay-based scoring functions
(Sanders et al., 2012). Nevertheless, the ratio of correctly
predicted poses vs. incorrectly predicted poses is better obtained
using overlay-based scoring functions (Sanders et al., 2012).
Regarding structure-based pharmacophore modeling, the use of
experimental structures to build the models must prioritize some
structural features obtained from both methods; as an example,
it has been demonstrated that a higher flexibility obtained in
structures elucidated by nuclear magnetic resonance (NMR)
spectroscopy helps to focus the models on the most essential
interactions with the receptor due to the presence of structural

FIGURE 3 | An overview of pharmacophore-based virtual screening applied for natural product libraries.
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flexibility of the complexes evidenced by the method. On the
other hand, models obtained by X-ray crystallography had more
pharmacophore elements compared to those obtained by NMR
spectroscopy (Ghanakota and Carlson, 2017).

Pharmacophoric screening has been applied to screen
compounds with cosmetic purposes using essential oils (Santana
et al., 2018; Da Costa et al., 2019). Essential oils contain diverse
classes of volatile and low-molecular-weight compounds with a
broad spectrum of biological activities (Do Nascimento et al.,
2020), and due to their reported repellent activities against
mosquitos, these compounds have been investigated in virtual
screening strategies (Santana et al., 2018; Thireou et al., 2018).
Recently, a study performed an in silico analysis of 1,633
compounds from the essential oils of 71 botanical families by
combining a structural similarity-based search method (ligand-
based virtual screening) with a pharmacophore-based virtual
screening (structure-based strategy). The authors used, as a
reference, the structure of N,N-diethyl-meta-toluamide (DEET)
complexed to the odorant-binding protein of Anopheles gambiae,
and they found seven natural volatile compounds with potential
repellent activity against mosquitos, such as p-cymen-8-yl,
thymol acetate, carvacryl acetate, thymyl isovalerate, and p-anisyl
hexanoate (Da Costa et al., 2019).

Currently, different programs generate pharmacophore
models, differing in the algorithm applied to evaluate the
conformational ligand flexibility as well as to perform the
structural alignment. Some commercial programs applied to
pharmacophore prediction include LigandScout (Wolber and
Langer, 2005) and Molecular Operating Environment (MOE)
(Molecular Operating Environment, 2019). Both programs
apply ligand- and structure-based pharmacophore modeling
and are compatible with the most used operating systems. Some
open-source programs that use ligand-based pharmacophore
prediction include Pharmer (https://sourceforge.net/projects/
pharmer/) (Koes and Camacho, 2011) and Align-it (previously
named Pharao; OS compatibility: OS X) (Taminau et al.,
2008). Free-access web servers have also been developed to
screen compounds using the structure-based pharmacophore
approaches, such as Pharmit (http://pharmit.csb.pitt.edu/)
(Sunseri and Koes, 2016) and PharmMapper (http://www.lilab-
ecust.cn/pharmmapper/) (Liu et al., 2010).

3D Shape-Similarity Search Methods
The molecular shape acquired by a ligand is crucial to defining its
affinity and selectivity against the protein binding site (Kortagere
et al., 2009). Based on this assumption, the 3D shape-similarity
search methods assume the premise that two compounds could
be recognized by the same bioreceptor and then modulate their
activity (Koes and Camacho, 2014; Kumar and Zhang, 2018).
Shape-similarity methods can screen vast compound libraries
against a reference ligand with known bioactivity (Ai et al., 2014;
Koes and Camacho, 2014).

These methods are subdivided into two categories: (1)
alignment-free methods that are usually computationally faster
because they do not require overlapping the molecules or
evaluating properties related to the surface (Seddon et al., 2019)
and (2) alignment-basedmethods that are computationally costly
since these methods superimpose molecular shapes and analyze

surface properties, such as polarity and hydrophobicity (Fontaine
et al., 2007; Kumar and Zhang, 2018). Different methods
have been used in the representation of the 3D molecular
shape of the ligands, such as Gaussian overlay-based methods
(Cai et al., 2013), atomic distance-based methods (Ballester
et al., 2009; Ballester, 2011; Bonanno and Ebejer, 2020), and
surface-based methods (Karaboga et al., 2013; Cleves et al.,
2019). The recognized molecular shapes are transformed into
the 3D molecular fingerprints that are then compared using
similarities or distance indexes, such as Tanimoto, Dice, and
Tversky coefficients (Shin et al., 2015). Due to the complex
structure of natural products, the identification of their molecular
targets has been challenging even using computational tools;
however, the 3D shape-based similarity search methods have
emerged as an efficient strategy to predict the macromolecular
targets of these compounds (Shin et al., 2015; Chen et al.,
2020). Web servers that apply shape-similarity search methods
include the SHAFTS (Liu et al., 2011) and USR-VS (Li et al.,
2016). Some installable open-source programs include Shape-
it (OS compatibility: Linux) (Grant et al., 1996), gWEGA (Yan
et al., 2014), and OptiPharm (Puertas-Martín et al., 2019).
Some commercial solutions include Shape TK (OS compatibility:
Linux/MS-Windows/macOS) (Software O Scientific, 2008).

Shape-based similarity methods have been used in virtual
screening workflows alone or combined with different
computational techniques (Pavadai et al., 2017; Thireou
et al., 2018). Pavadai et al. applied shape-based and fingerprint-
based similarity search against natural product libraries to find
new steroid-like natural products as antiplasmodial agents using,
as a search key, fusidic acid. The hit compounds were filtered
based on the predicted partition coefficient, logP, and the authors
identified nine new compounds that inhibited parasite growth
with IC50 values of <20µM (Pavadai et al., 2017). Figure 4
exhibits an overview of the 3D shape-similarity search methods
applied to identify compounds in chemical libraries with similar
molecular shapes despite their different structures.

Machine Learning Algorithms
Machine learning (ML) is the computational practice of
using intelligent algorithms to learn and make decisions
in order to solve problems related to an amount of data.
Artificial Intelligence has made important progress toward the
acceleration of research and development of novel bioactive
natural compounds with industrial applications. This approach
has been widely applied in different steps related to the
virtual screening strategies, for example to predict some
pharmacokinetic properties (Wei et al., 2017; Qiang et al., 2018)
[e.g., penetration of compounds into the blood–brain barrier
(Zhang et al., 2017; Dai et al., 2021) and cell membrane (Wei
et al., 2017; Wolfe et al., 2018)], compounds’ side effects (Dimitri
and Lió, 2017), their toxicity (Mayr et al., 2016; Pu et al.,
2019; Zheng et al., 2020), molecular targets (Wang et al., 2013;
Jeon et al., 2014), and their bioactivity (Li and Huang, 2012;
Schaduangrat et al., 2019; Shoombuatong et al., 2019) [e.g.,
anti-tuberculosis (Gomes et al., 2017; Maia S. M. et al., 2020),
anticancer (Charoenkwan et al., 2021), and insecticidal activities
(Soares Rodrigues et al., 2021)] as well as to identify the pan-
assay interference compounds (PAINS), i.e., highly reactive and
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FIGURE 4 | Applications of alignment-based 3D shape-similarity search

methods to identify compounds with similar molecular shapes.

promiscuous molecules that are often false positives in high-
throughput screening assays (Jasial et al., 2018). In some cases,
the ML algorithms have been reported with superior efficiency
and, thus, are more suitable to predict hit compounds from
chemical libraries than are the traditional QSAR methods (Tsou
et al., 2020).

ML algorithms are trained using a large number of data
that are used as a benchmark to accomplish a particular
computational problem (Vamathevan et al., 2019). The main
aim of an ML framework in virtual screening strategies is to
generalize the results obtained from the training dataset to
better evaluate the test dataset and, then, make the decision
(Sieg et al., 2019; Vamathevan et al., 2019). ML algorithms
applied in the LBVS approach aim to predict the bioactivity
or pharmacodynamic/pharmacokinetic properties of molecules
based on their similarity to known actives. Therefore, to evaluate
the similarity of the molecules, these algorithms use, as datasets,
molecular descriptors calculated from the compound structures
(Li and Huang, 2012; Challa et al., 2020) using different
molecularmodeling and cheminformatics toolkits, such as RDKit
(Lovrić et al., 2019) and CDK (Willighagen et al., 2017). Some
chemo-structural and bioactivity information deposited in public
databases, as well as experimental results, have also been used to

train these algorithms (Martínez-Treviño et al., 2020). Molecular
descriptors applied to evaluate the similarity of molecules
include the physicochemical [cLogP, topological polar surface
area (tPSA), molecular weight, etc.] and structural properties
(rotatable bonds, aromatic rings, etc.) (Lo et al., 2018), molecular
fingerprints (Zhang et al., 2018), functional groups, molecular
shape (Bonanno and Ebejer, 2020), and pharmacophores (Sato
et al., 2010); in the case of proteins and peptides, some molecular
descriptors include amino acid sequence composition (Wei et al.,
2017; Manavalan et al., 2018; Qiang et al., 2018). The choice
of the molecular representation and the type of molecular
descriptor determine the efficiency and the interpretability of
the final results obtained by the ML algorithms (David et al.,
2020; Jiménez-Luna et al., 2020). In structure-based strategies,
ML algorithms have been used in scoring the functions of
molecular docking methods, seeking rank compound libraries
based on their predicted affinity against a molecular target, and
discriminating between hits and decoy compounds. To reach
these results, the ML algorithms are trained using the binding
affinities of active molecules against protein targets (Wójcikowski
et al., 2017; Li et al., 2020). Different open-source programs have
been applied to develop machine learning models [e.g., scikit-
learn (Pedregosa et al., 2011) and SciPy (Virtanen et al., 2020),
both Python modules] and pipelines [e.g., KNIME (Berthold
et al., 2009), a data analytics platform].

ML algorithms are classified into supervised and unsupervised
learning (Figure 5). Supervised ML algorithms require a
retrospective validation using a dataset of active and inactive
compounds to better select the methods that are suitable
to differentiate the bioactive molecules (Sieg et al., 2019).
Supervised learning techniques are divided into two subgroups:
(1) regression analysis and (2) classifier methods. The first
one includes decision trees, artificial neural networks, support
vector machines, and random forest methods. In contrast, the
unsupervised algorithms recognize patterns in the dataset of
compounds without the presence of inactive ones, thus trying to
organize the data in a logical form. Thesemethods have been used
for exploratory analyses using clustering data (Patel et al., 2020).
Unsupervised algorithms include clustering methods, such as
the hidden Markov model, hierarchical clustering, and k-means
(Vamathevan et al., 2019).

Supervised ML algorithms have been widely applied to
discover new bioactive natural products (Bilsland et al., 2015;
Galúcio et al., 2019; Grisoni et al., 2019; Schaduangrat et al.,
2019). Figure 6 exhibits a general overview of the computational
steps involved in obtaining a validated supervised ML algorithm
to predict the bioactivity of natural products. The first
step to modeling a machine learning algorithm involves the
preparation of a molecule dataset, i.e., obtaining the molecular
structures/sequences that will be used in the algorithm using
online databases, literature, or experimental data. This step
also includes the correction of possible stereochemical and
valence errors present in the molecular structures as well
as the correction and conversions of the files to readable
formats recognized by the cheminformatics programs. Then, the
molecular properties are calculated using molecular modeling
and cheminformatics toolboxes, extracted from online databases,
or obtained from experimental results, then these descriptors are
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FIGURE 5 | Classification of supervised and unsupervised learning techniques applied in virtual screening strategies.

evaluated to compose the features of the ML model. Currently,
different online databases have been developed with information
regarding the structural and physicochemical properties of the
molecular structure of natural products that could be used in
the feature composition (Dunkel et al., 2006; Pilon et al., 2017;
Pilón-Jiménez et al., 2019; Sorokina and Steinbeck, 2019). In this
step, some statistical methods are applied to select the features,
such as Kendall correlation, analysis of variance (ANOVA), and
Spearman’s test. Finally, the ML model is evaluated regarding
its performance to discriminate the true and positive bioactive
compounds. Several metrics have been applied to evaluate these
models, such as the receiver operating characteristic (ROC)
curve, enrichment factors, and mean squared error (R2) applied
for linear regression methods. We do not intend to extend the
discussion about the application and the choice of the most
adequate method to select the feature composition or to evaluate
ML models; thus, we recommend the readers to consult previous
reviews (Hossin and Sulaiman, 2015; Rácz et al., 2019). In the
present sessions, we will discuss the functioning of some ML
algorithms most applied in virtual screening strategies focusing
on the k-nearest neighbor, decision tree, random forest, artificial,
and neural network.

Decision tree algorithms are a supervised learning technique
and their construction model is based on two steps: (1) selection
of the features and (2) the building of the decision trees. This
method is commonly represented by a tree, where the internal
nodes represent the selected features (molecular descriptors),
the branches represent the testing results of the molecule
(decision criteria), and the leaf nodes represent the molecules
(molecular structure) (Figure 7A). Compounds are classified
based on the leaf nodes that are reached through a series of

algorithm decisions (branches). Decision tree (DT) models are
constructed focusing on the selection of the best test conditions
to expand the extremities of the tree. Some test metrics, such
as the information–gain ratio and entropy, are applied to select
the best test classification for the algorithm (Lavecchia, 2015).
Decision trees have been applied in different virtual screenings
of natural products to predict their bioactivity and drug-likeness
(Pereira et al., 2015; Wang et al., 2019). Random forest is an
ensemble learning technique considered an improvement of the
decision tree algorithms to correct the overfitting in the training
set (Svetnik et al., 2003). Random forest algorithms generate
a model composed of several randomly sampled decision trees
from the original dataset obtaining its random features. Random
forest models have been applied in virtual screening pipelines to
predict compound drug-likeness, bioactivity (Svetnik et al., 2003;
Zoffmann et al., 2019), and the pharmacokinetic profile (Dong
et al., 2018).

Artificial neural networks are the most studied learning
techniques with widely diverse applications in the investigation of
a compound’s bioactivity (Lata et al., 2007; Liu et al., 2019, 2020;
Stokes et al., 2020). Methods that apply neural networks mimic
brain functioning and structure, building a model that reaches
a decision based on previous experiences obtained from the
training dataset (Jing et al., 2018). The architecture of an artificial
neural network model comprises several units, named neurons
which are connected to form a network arranged in different
layers. Depending upon their position in the network, these layers
are classified as output layers, input layers (external), and hidden
layers (internal) (Zhang R. et al., 2020). Amultilayer feed-forward
neural network contains neurons connected only to those located
in the following layers (Figure 7B), and this class is included in
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FIGURE 6 | A general overview of the computational steps involved in

obtaining a validated supervised machine learning algorithm.

radial basis function networks, multilayer perceptrons, and self-
organizing maps (Kohonen maps) (Lavecchia, 2015). In contrast,
the recurrent neural networks contain feedbacks between the
layers, i.e., interconnections between neurons from the same and
consecutive layers; thus, their outputs are determined by the
previous outputs and the current inputs (Figure 7B), which form
a “memory” during the learning process.

The k-nearest neighbor is instance-based learning and is
one of the simplest and intuitive ML algorithms applied to
classify and rank compounds based on the nearest training
examples present in the chemical space (analyzed feature
composition) (Kauffman and Jurs, 2001; Medina-Franco et al.,
2005). The algorithm compares the molecular descriptors of
the query molecule with k-neighbors that have the smallest
distance (k-value), where the k-value corresponds to the number
of closest neighbors (a positive integer) and classifies them
by majority votes of their closest neighbors (Figure 7C). The
number of neighbors is the most important parameter for the
model, deciding its complexity. k-nearest neighbor is a classifier
algorithm; thus, irrelevant features can lead to disturbances in
the compound classification. It is indicated to first preprocess

the molecular descriptors to remove the irrelevant or the most
correlated ones.

Despite the majority of the computational screening
approaches using ML algorithms lacking experimental
validations, we have some interesting successful studies
that aimed to find and characterize novel natural products with
experimentally validated biological activity (Rupp et al., 2010;
Zhang et al., 2017; Nocedo-Mena et al., 2019; Patsilinakos et al.,
2019; Lee et al., 2020; Liu et al., 2020). Recently, Reher et al.
reported on the SMART 2.0, an NMR-based machine learning
tool designed for the discovery and characterization of natural
products. The tool was successfully applied to investigate the
environmental extract of Symploca sp., a filamentous marine
cyanobacterium, leading to the isolation and identification of a
new chimeric macrolide named symplocolide A. The molecular
structure of this novel natural product was confirmed by 1D/2D
NMR and tandem liquid chromatography mass spectrometry
(LC-MS2) analysis (Reher et al., 2020). Similarly, Lee et al. applied
SMART 2.0 to prioritize the isolation and characterization of
sesquiterpene lactones from the Eupatorium fortune plant. The
isolated natural compounds were experimentally tested against
five cancer cell lines and exhibited cytotoxic activities (Lee et al.,
2020).

ML algorithms have been successfully applied to predict
the bioactivity of compounds. Recently, Nocedo-Mena et al.
(2019) combined machine learning, perturbation theory, and
information fusion techniques to investigate the antibacterial
activity of terpenes from the Cissus incisa plant, and the authors
found that phytol and α-amyrin showed minimum inhibitory
concentrations equal to 100µg/ml against the carbapenem-
resistant Acinetobacter baumannii and the vancomycin-resistant
Enterococcus faecium. In another study, Liu et al. applied
deep learning algorithms to find natural products with anti-
osteoporosis activity. The selected hits successfully suppressed
the osteoclastogenesis-related genes Rank, Tracp, Ctsk, and
Nfatc1 in vitro (Liu et al., 2020). Some studies have also
reported experimental validations of ML models to predict
pharmacokinetic properties. Zhang et al. used a hybrid ML
algorithm using support vector machine, probabilistic neural
network, naive Bayes classifier, and random forest models
combined with in vitro assays to predict the blood–brain barrier
penetration of natural compounds from the Traditional Chinese
Medicine database (TCMDB). The authors found an overall
accuracy for experimental validation around 81% (Zhang et al.,
2017).

BIASES AND LIMITATIONS OF VIRTUAL
SCREENING METHODS

Virtual screening approaches have been predictive, useful, and
cost-effective in identifying novel bioactive compounds when
compared with the traditional methods applied solely. However,
despite their well-known success, these methods have limitations
and their models are prone to biases (Sieg et al., 2019; Slater and
Kontoyianni, 2019). It has been demonstrated that the presence
of stereochemical and valence errors in the chemical data libraries
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FIGURE 7 | Schematic overview of some of the machine learning algorithms applied in virtual screening. (A) Two-dimensional (2D) diagram of a single root tree of a

decision tree algorithm and the general architecture of a random forest. (B) The architecture of a multilayer feed-forward and recursive artificial neural network. Zw

refers to neurons of the hidden layers (internal); Zk and Zt, to the neurons of the input and output layers, respectively. (C) k-Nearest neighbor algorithm showing the

learning technique to classify a new data represented by the 2D yellow point, which is classified as belonging to class A (gray triangles).
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could also induce investigators to choose unfeasible compounds
(Williams and Ekins, 2011; Williams et al., 2012).

Biases, in essence, correspond to distortions from the
true underlying relationship between the investigated objects.
The investigation of the chemo-structural diversity of natural
products and their bioactivity using similarity-based search
methods is biased because it considers an assumption that the
discovery of novel active compoundsmust consider the similarity
of known active ones (Sieg et al., 2019). This assumption is
susceptible to drive the decision-making process to erroneous
directions and can reduce the structural diversity of new chemo-
structures. Combining low time-consuming computational
simulations andmore realistic results also remains a challenge for
some 3D similarity-based search algorithms, which, in general,
require superimposing many conformation pairs of compounds
from large chemical libraries, thus requiring high-performance
computing (Yan et al., 2016).

Despite the chemical space being considered infinite, the
pharmacological space of bioactive compounds of the “druggable
human genome” is limited, and its exploration remains a difficult
task even from a computational point of view (Opassi et al.,
2018). This assumption has been proven to be true for other
classes of bioactive compounds with industrial applications, such
as pesticides and herbicides (Avram et al., 2014). Therefore, the
exclusion of some compounds during the filtering process is
comprehensive, but can also reduce the investigation of new
chemical entities with specific bioactivity.

In pharmacophore-based virtual screening, the selection of
inappropriate models, or very restricted ones, could eliminate an
interesting structural diversity of natural compounds. However,
the choice of less restrictive models could retrieve a larger
number of false-positive compounds (Lans et al., 2020; Schaller
et al., 2020). Based on these biases, a balanced choice between
strict and loose criteria to select the pharmacophore model
to filter natural products could be decided by prioritizing
pharmacophore moieties better associated with a higher
compound activity; thus, the information obtained from
structure–activity analyses might be useful to decide on the
most appropriate pharmacophore model to screen natural
products (Qing et al., 2014). Regarding the limitation of ligand-
based pharmacophore modeling methods, it has been reported
that their dependence on structurally similar compounds
reduces their application since compounds with high structural
dissimilarities may not share the same binding mode (Schaller
et al., 2020). Furthermore, few ligand-basedmethods consider the
conformational flexibility of the macromolecular receptor in the
determination of the pharmacophoremodel (Lans et al., 2020). In
molecular docking, for example, the elimination of compounds
with poor fitness could be biased due to the choice of wrong or
inappropriate scoring functions, i.e., those that contain chemical
information that contradicts the physical reality or that were not
calibrated for the class of investigatedmolecules (Luo et al., 2017).

Supervised machine learning algorithms are also prone to
biases, which can lead to a misleading interpretation of the
final results obtained for chemical data libraries. It has been
demonstrated that highly correlated training and testing datasets,
i.e., containing chemical data too closely similar (e.g., same

molecular scaffold with a high frequency between the datasets),
could limit the applicability of the machine learning model,
reaching false accuracies in its predictiveness (Wallach and
Heifets, 2018; Sieg et al., 2019). Therefore, low training errors
are insufficient to justify the choice of a machine learning
model since the satisfactory predictive performance could be
due to redundancy between the training and testing datasets
rather than accuracy (Wallach and Heifets, 2018). It has also
been demonstrated that some biased machine learning models
could be obtained using a training dataset composed of active
molecules that are easily differentiated from inactive ones by
coarse properties, such as cLogP, the number of HBA, and
molecular weight (Ripphausen et al., 2011). Based on these
biases of machine learning models, it is necessary to investigate
whether chemical data benchmarks contain design flaws that
might lead to optimistic performances that are distorted from
the chemical reality. Some computational methods have been
developed to avoid overfitting in chemical datasets. Wallach and
Heifets (2018) developed the asymmetric validation embedding
(AVE) bias using Python language to predict the performance
across common benchmarks and standard machine learning
algorithms, and Ripphausen et al. (2011) developed a public
compound database, named REPROVIS-DB, that contains
information from successful ligand-based virtual screening
strategies including experimentally confirmed hits, reference
compounds, screening databases, and selection criteria.

NATURAL PRODUCTS DATABASES
APPLIED IN VIRTUAL SCREENING

The development of computational approaches for virtual
screening has been incentivized by the presence of numerous
biological and chemo-structural information of natural products
deposited in public databases (Valli et al., 2013; Harvey et al.,
2015; Pilon et al., 2017), as well as by the advances of computer
processing and storage capacity (Walters, 2019). High scientific
efforts to isolate and characterize natural products have increased
the interest of the academia and industry to comprehensively
organize this information using public databases to better
explore these natural sources and also to contribute to
our knowledge regarding their ethnobotanical information,
biological activities, chemical structures, natural origin, and
physicochemical properties. Herein, we do not intend to provide
exhaustive information regarding these online databases with
public access, but we will exhibit those with potential applications
in virtual screening strategies of natural products.

Nuclei of Bioassays, Ecophysiology, and
Biosynthesis of Natural Products Database
(NuBBEDB)
NuBBEDB (https://nubbe.iq.unesp.br/portal/nubbe-search.html)
provides information regarding chemo-structures obtained from
Brazilian biodiversity (Valli et al., 2013). Currently, the database
contains more than 2,200 structures of natural compounds
obtained from different Brazilian biomes (Pilon et al., 2017).
NuBBEDB contains the 3D structures of natural products in an
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MOL2 file format, which is compatible with the most widely used
molecular modeling and cheminformatics programs.

Comprehensive Marine Natural Products
Database (CMNPD)
The Comprehensive Marine Natural Products Database
(CMNPD) (https://www.cmnpd.org/) is a comprehensive and
curated marine natural products database that contains more
than 32,000 structures (accessed on January 06, 2020) with
different physicochemical and pharmacokinetic properties.
Besides, it includes information regarding their biological
activity, natural origin, and the geographical distribution
of source organisms (Lyu et al., 2020). The database also
contains the complete molecule datasets freely available for
download (https://docs.cmnpd.org/downloads).

Natural Product-Likeness Software Suite
and Database (NaPLeS)
The natural product-likeness software suite NaPLeS (https://
naples.naturalproducts.net/) is an MySQL database of natural
products and an open-source web application that computes
the natural product-likeness scores of large chemical libraries.
Currently, the database contains 315,916 natural products from
various public databases (Sorokina and Steinbeck, 2019).

Universal Natural Product Database
(UNaProd)
The Universal Natural Product Database (UNaProd) (http://
jafarilab.com/unaprod/index.php) is an online and public
database of natural products used in Iranian traditional medicine.
The database currently contains 2,696 compounds of botanical,
animal, and mineral origins (accessed on January 06, 2020)
(Naghizadeh et al., 2020).

Natural Product Activity and Species
Source Database (NPASS)
The Natural Product Activity and Species Source Database
(NPASS) (http://bidd.group/NPASS/index.php) provides
biological activity results and information regarding the
origin species of more than 35,032 natural products (accessed on
January 06, 2020) (Zeng et al., 2018). The database also contains a
structural compound library freely available for download in SDF
and SMILES formats (http://bidd.group/NPASS/downloadnpass.
html).

BIOFACQUIM
BIOFACQUIM (https://biofacquim.herokuapp.com/) is a
free and public database of natural products isolated and
characterized from Mexican biodiversity. Compounds from this
database are also available in the ZINC database (Pilón-Jiménez
et al., 2019). Currently, the database contains 423 natural
compounds (accessed on January 08, 2020) which are identified
by their respective names, accession codes, source organisms, in
SMILE format, and references.

Natural Products Atlas
The Natural Products Atlas (https://www.npatlas.org/joomla/)
is an open-access database of microbial natural products that
contain 24,594 compound structures (accessed on January
07, 2020) and information related to their structure, IUPAC
name, source organisms, and literature (van Santen et al.,
2019). The database also contains information of other natural
product databases, such as the Minimum Information about a
Biosynthetic Gene Cluster (MIBiG) repository and the Global
Natural Products Social Molecular Networking (GNPS) platform
(van Santen et al., 2019).

African Natural Products Database
(ANPDB)
The African Natural Products database (ANPDB) is a free
database of natural products from different regions of the
African continent (available at ANPDB|ANPDB (African-
compounds.org) and contains ∼4,500 structures (accessed on
January 12, 2020). The available data content comprises sources
covering the period from 1962 to 2019 (Ntie-Kang et al., 2017).
The database also contains the 3D structures of natural products
in SMILES and SDF formats available for non-commercial uses.

Natural Products for Cancer Regulation
(NPCARE)
The Natural Products for Cancer Regulation (NPCARE) is a free
online database (http://silver.sejong.ac.kr/npcare/) that provides
more than 6,000 natural products and more than 2,000 extracts
isolated from 1,952 different species including microorganisms,
marine organisms, and plants, as well as information related
to the action of these extracts and isolated natural compounds
against the gene expression levels and cancer cell line inhibition
(Choi et al., 2017). The database is an interesting source to
discover potential anticancer compounds and to understand the
anticancer molecular mechanisms underlying natural products.

StreptomeDB 3.0
StreptomeDB (http://www.pharmbioinf.uni-freiburg.de/
streptomedb) is a free and online database used to explore natural
products isolated or mutasynthesized from streptomycetes
using an interactive phylogenetic analysis (Lucas et al., 2013;
Moumbock et al., 2021). StreptomeDB 3.0 provides more than
6,500 natural products obtained from ∼3,300 Streptomyces
strains (Moumbock et al., 2021). These metabolites show
interesting biological activities, such as antimicrobial, anticancer,
and immunosuppressant properties. The compound structures
are identified by their respective source organisms, references,
biological role, and the routes of biosynthesis.

FINAL CONSIDERATIONS

Natural products offer an interesting structural scaffold, helping
to find new chemical entities with several industrial applications,
thus offering innovative solutions to solve old worldwide
problems, such as bacterial resistance against antibiotics (Smith
et al., 2018; Newman and Cragg, 2020). However, the complex
and highly diverse structure and the peculiar chemical space
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occupied by natural products have imposed pharmacokinetic
and pharmacodynamic limitations, thus restricting their use for
specific purposes by the pharmaceutical and cosmetic industries.

Several computational methods applied in virtual screening
strategies have been developed over the years, thus increasing
the rational explorations of natural sources aiming at the
identification of specific bioactive compounds from large chemo-
structural libraries. These computational strategies have also
opened up new opportunities to discover new industrial
applications of natural compounds justifying the financial and
time efforts for their exploration. Natural products present a
high structural diversity when compared with their synthetic
counterparts, and their difference is, in part, due to the existing
intricate biosynthetic pathways in living organisms that produce
derived structures, containing modified functional groups, such
as glycosylation and methylation. Based on these, the virtual
screening strategies must investigate the chemical space of
natural products, seeking to identify some classes of compounds
with bioactivity or structural scaffolds present in known active
molecules. Some of these screening strategies include applying
less restrictive structural-based similarity cutoffs (Pavadai et al.,
2017) and themodeling of hypothetically derived natural product
structures (Skinnider et al., 2017). Regarding the application
of molecular filters, some “bioactivity-likeness” criteria must be
used with caution to avoid misleading screening or remotion
of the important structural diversity of the compound libraries
since the structural complexity of natural products situates them
beyond the acceptable limits of some empirical rules determined
by these filters.

Artificial intelligence algorithms employed in ligand-based
approaches have demonstrated high success rates in finding
interesting compounds with reduced computational time, and
their combined uses with cheminformatics and molecular
modeling methods have increased the efficiency of virtual

screening strategies, allowing us to explore the highly diverse
chemo-structural landscapes of natural products.

Here, we hope to encourage the use of these computational
tools by experimental groups, helping researchers to familiarize
themselves with their concepts and capabilities as well as alert
them of some of the common biases faced by investigators
during the investigation of natural sources using computational
tools, citing some possible solutions. Finally, we indicate that
the automatic process represented by virtual screening must be
oriented by human expert decision to avoid misinterpretation
or false findings, and also to select compounds based on their
desirable features, such as commercial availability, low cost, and
synthetic feasibility.
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