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ABSTRACT: Piper divaricatum essential oil (PDEO), extracted from
plants of the Brazilian Amazon, was investigated for the first time as a novel
green or eco-friendly inhibitor for steel corrosion in 1 M HCl at 25 °C.
Our electrochemical studies demonstrate that for different PDEO
concentrations, lower Ecorr and icorr values were obtained. The influence
of the oil concentration on corrosion inhibition, 0.5−4 g/L, was
determined for 1 and 7 days of immersion. The corrosion rate (CR)
and inhibition efficiency (IE) were determined by mass loss. The steel
surface in the presence and absence of oil was investigated by scanning
electron microscopy (SEM). The main PDEO compounds, determined by
gas chromatography−mass spectrometry (GC-MS), were methyleugenol
(20.68%) and eugenol (15.42%). The CR and IE for 2 g/L PDEO
exhibited an optimal value of 4.31 mm/year and 98.3% for 7 days of
immersion, respectively. The surface with 2 g/L oil for 7 days exhibited a less rough morphology, which was attributed to the
corrosion inhibitory effect of PDEO. In addition, the PDEO adsorption process on the steel surface obeyed the Langmuir isotherm
model. Negative values found for free standard energy ( Gads° < 0 kJ·mol−1) were attributed as a favorable process, i.e., an indicative
of physisorption and chemisorption between the PDEO components and the steel surface. Our results reveal that the PDEO has a
promising character for anticorrosive steel applications and metal coating in industries.

1. INTRODUCTION
Corrosion control of metals, alloys, and steel is of technical,
economical, environmental, and aesthetical importance. Corro-
sion is a constant and continuous problem that is often difficult
to eliminate completely. Prevention is more practical and
achievable than complete elimination. The use of inhibitors is
one of the best options for protecting metals, alloys, and steel
against corrosion.1

Steel corrosion is a degradation process caused by oxidation,2

an aqueous or acidic medium on the steel surface. This
phenomenon reduces the useful life of artifacts manufactured
from steel. Acid media are widely used by industries in steel
artifacts in situations such as pickling, oil well acidizing, and acid
cleaning process.3

Steel corrosion in an acid medium can be inhibited with the
use of organic inhibitors4 that act directly on electrochemical
reactions, which are capable of delaying anodic, cathodic, or
both activities.5 The 1 M HCl5−7 is very investigated in studies
of natural corrosion inhibitors. 1 M H3PO4

8 and 1 M H2SO4
9

solutions were also investigated.

According to a study fromNACE International, in 2016, about
International Measures of Prevention, Application, and
Economics of Corrosion Technologies (IMPACT) to examine
the current role of corrosion management in industry and
government and to establish best practices, the global cost of
corrosion was estimated at $2.5 trillion (USD) per year, which is
equivalent to 3.4% of the global Gross Domestic Product
(GDP).10 Today, it is estimated to be around $3 trillion, which is
almost 3.5% of the 2020 world GDP. Thus, there has been a
search for newmethods and initiatives to reduce costs associated
with corrosion, with an increase in research for new alternatives
of inhibitors, mainly by those from plant origin.1
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Many inorganic and synthetic compounds have good
anticorrosive activity, but they are highly toxic to human beings
and the environment, often expensive, and nonbiodegradable.11

The environmental toxicity of organic corrosion inhibitors has
prompted the search for corrosion inhibitors with low
environmental impact and nontoxic properties made possible
the use of green or natural corrosion inhibitors which are
biodegradable, do not contain heavy metals, are usually obtained
from plants, and have low cost.12 The traditionally used natural
organic corrosion inhibitors in aqueous solutions are based on
leaf extract, juice, and essential oil (EO).7,8,13

Thus, the use of natural products as corrosion inhibitors has
become a key area of research because plant extracts are viewed
as an incredibly rich source of naturally synthesized chemical
compounds that are biodegradable in nature and can be
extracted by simple procedures with low cost.14

The natural products extracted from plants (leaves, peels,
seeds, fruits, and roots) have been widely studied as corrosion
inhibitors of C-steel in acidic media.
Plants are green corrosion inhibitors, inexpensive, readily

available, and renewable, as well as considered an inexhaustible
source of environmentally friendly compounds whose heter-
oatoms (oxygen, sulfur, and nitrogen) and their π-electrons
interact with the metallic surface through adsorption, mitigating
the steel corrosive process,15 which reduces the corrosion rate
(CR) and improves the inhibition efficiency (IE) in percentage
(%).
Some oils of vegetable origin have characteristics of

adsorbents, and this fact provides a protective layer on the
metallic surface against corrosion. This is related to the presence
of heteroatoms in the chemical compounds of the vegetable,
such as oxygen, nitrogen, sulfur, and phosphorus.1

The recent exploitation of natural resources such as essential
oils (EOs) from diverse plant sources as low-cost, green
corrosion inhibitors is a promising area of research. Many EOs
are used as potential inhibitors against the corrosion of iron or
steel. The anticorrosion activity of EOs is normally attributed to
the existence of complex organic components, such as
oxygenated monoterpenes, sesquiterpenes, and hydrocarbons.
These compounds generally contain polar groups with oxygen
atoms and conjugated aromatic rings or double bonds. As such,
these substances are susceptible to adsorbing on metal
surfaces.16

Artemisia mesatlantica EO was proposed as a natural inhibitor
for steel corrosion in 1 M HCl. In this study, a maximum IE of
92% was found using a concentration of 3.0 g/L.17 For
cinnamaldehyde, obtained from cinnamon EO, an IE of
95.36% was found for 0.2 g/L of inhibitor.16 For 0.5 M HCl,
clove EO exhibited an IE of 94% for steel using a concentration
of 4 g/L. The authors reported that the anticorrosive activity
occurred due to the association between the oil components.18

An IE of 85% for steel corrosion in a 1 M HCl medium was
observed for the EO extracted from the leaves of Dysphania
ambrosioides.19

The EO of the species Piper divaricatum, belonging to the
Piperaceae family, which is the most abundant of the 12 families
of plants in the Amazon region, is extracted from leaves by
harvest via water-steam drag exhibiting biological activities
(antioxidant, bacterial, fungicidal, and larvicidal activity) due to
the diversity of chemical components and physicochemical
characteristics present in this volatile oil, with emphasis on
antioxidant activity. This property, when in ideal concentrations

in a corrosive environment, considerably inhibits or delays
oxidative processes.20,21

Corrosion is a spontaneous form of metal degradation or
deterioration by a chemical, biochemical, or electrochemical
process, in which the metal undergoes an oxidation reaction in
the presence of some chemical medium or element that can be
reduced, altering its chemical, physical, or mechanical properties
until it reaches its lowest energy state.22 In nature, the vast
majority of metals are in the form of oxides or hydroxides that
are in the minimum energy state. Due to this trend, refined
metals used in infrastructure, transportation, production,
manufacturing, and electronic equipment when in contact
with the environment tend to return to their natural or stable
thermodynamic state, i.e., into a more chemically stable form
such as oxide, hydroxide, or sulfide.23

Dhouibi et al. (2021) studied the anticorrosive effects of EOs
of rosemary (REO) and myrtle (MEO), extracted by the
Clevenger technique and analyzed using the gas chromatog-
raphy−mass spectrometry (GC-MS), which are rich in various
volatile compounds and act as cathodic-type green inhibitors for
copper corrosion in a 3 wt% NaCl solution. The EO molecule
adsorption on the copper surface followed a Langmuir isotherm,
and physical adsorption (vs chemical adsorption) is dominant.
The IE reached 91.88% and 92.54% at 10 g/L for MEO and
REO, respectively.24 Ihamdane et al. (2023) studied the
anticorrosive effect on the carbon steel surface of EO of oregano
(Origanum vulgare) leaf in a 1MHCl solution. The EOmolecule
adsorption on the carbon steel surface followed a Langmuir
isotherm, by the formation of rigid covalent bonds. The IE
reached 85.64% at 2 g/L for oregano in 1 M HCl.25 Already,
Bathily et al. (2021) reported a review on EOs and their
corrosion-inhibiting properties.26

In this work, the Piper divaricatum essential oil (PDEO), from
the Brazilian Amazon, was investigated for the first time by mass
loss experiments as a novel green corrosion inhibitor of steel in 1
MHCl at 25 °C for different concentrations (0, 0.5, 1.0, 2.0, and
4.0 g/L) and days (1 and 7). The PDEO was extracted by the
water-steam drag technique using a Clevenger-type glass system,
and its chemical composition was determined by GC-MS.
Gravimetric measurements were carried out in this study and
enabled to determine the inhibition efficiency (IE) and
corrosion rate (CR) of this oil, its mode of action, as well as
certain parameters specific to corrosion. The surface morphol-
ogy was observed by scanning electron microscope (SEM)
images, and the Langmuir adsorption isotherm was obtained to
analyze the adsorption mechanism on the metallic surface. The
aim is to expand studies on the evaluation of the PDEO with the
potential for inhibiting corrosion, carrying out experimental and
theoretical tests in order to contribute to research on plant
anticorrosive inhibitors, reinforcing their use on industrial scales
and their advantages and benefits for the environment, in
contrast to the toxicity of traditionally used organic and
inorganic inhibitors. This investigation contributes to the
proposal of a new natural inhibitor of corrosion in an acidic
environment and presents the biomass available for the
extraction of EO as the main challenge.

2. EXPERIMENT
2.1. Materials. The materials used in this investigation are

listed in Table 1.
2.2. Methodology. 2.2.1. Extraction of PDEO. The

essential oil was extracted from the leaves of Piper divaricatum,
from plants collected in the city of Beleḿ, Brazil, by water-steam
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drag using a Clevenger-type glass system. The botanical material
was collected at Cidade Universitaŕia “Jose ́ Silveira Netto”
(Latitude: 1° 27′ 48.5″ S, Longitude: 48° 26′ 38.8″ W). Leaves
and thin branches were selected, and then, the plant material was
placed in an oven with air circulation at 35 °C. After this stage,
the dry material was crushed in a knife mill and homogenized.
The extraction system used Clevenger-type glass equipment,
coupled to a refrigeration system to maintain condensation
water between 10 and 15 °C for 3 h. After extraction, the oil was
centrifuged in a Pinmax 80−2B system for 5 min at 3000 rpm,
dehydrated with anhydrous Na2SO4, and centrifuged again
under the same conditions described (Figure 1). The chemical

composition of the oil was determined by gas chromatography−
mass spectrometry (GC-MS), using a Shimadzu Model QP
2010 Ultra instrument, equipped with an Rtx-5MS fused silica
capillary column (30 m × 0.25 mm; 0.25 μm film thickness).

2.2.2. Electrochemical Studies. Polarization curves for steel
samples with and without PDEO in 1 M HCl were acquired
using an Autolabmodel PPGSTAT302 potentiostat/galvanostat
instrument. The instrument was equipped with three electrode
cells: working (steel sample), reference (silver and silver
nitrate), and counter electrode (platinum). The potential was
determined in the range of −0.550 to −0.150 V.

2.2.3. Mass Loss Experiments. Coupons were cut from a
galvanized steel sheet supplied by Aço Cearense. They had
dimensions of 2 cm × 2 cm and also an orifice with a 5 mm
diameter. The coupons were degalvanized with 10% acetic acid
from Êxodo Cientfica within 24 h. After that, the coupons were
washed with distilled water until the total removal of acetic acid

residues and dried at 80 °C for 30 min. For the gravimetric tests,
the coupons were weighed and immersed in 100 mL of 1MHCl
with PDEO, 0.5−4 g/L, for 1 and 7 days of immersion. The tests
were performed in triplicate for each concentration of oil used.
After 1 and 7 days, the coupons were removed, washed with
distilled water, dried, and weighed. The inhibition efficiency
(IE) in percentage (%) was calculated by eq 1:16

M M
M

IE(%) 100B 1

B
= ·

i
k
jjjjj

y
{
zzzzz (1)

where MB and M1 are the coupon mass losses without and
with the inhibitor, respectively. The corrosion rate (CR) was
calculated by eq 2:13

m
D A t

CR(mm/year) 87.6=
· · (2)

where Δm = difference in coupon mass (mg) before and after
immersion in theHCl solution,D =metal density (∼7.8 g/cm3),
A = coupon area (cm2), and t = time (h).

2.2.4. Adsorption Isotherm Models. The adsorption
isotherms were obtained to analyze the adsorption mechanism
on the metallic surface as shown in eqs 36. The correlation
coefficient (R2) was used to determine which isotherms of
Langmuir, Temkin, Frumkin, and Freundlich are most suitable
for the adsorption of oil onto the steel surface. To determine the
isotherms, graphs were obtained based on the following
isotherm models:16,27,28

C
K

CLangmuir:
1inh

ads
inh= +i

k
jjj y

{
zzz

(3)

C
K gTemkin: log log

inh
ads=

i
k
jjjjj

y
{
zzzzz (4)

C
K gFrumkin: log

(1 )
log

inh
ads= +

i
k
jjjjj

y
{
zzzzz (5)

K n CFreundlich: log log logads inh= + · (6)

where Cinh = inhibitor concentration (g/L), θ = degree of
surface coverage, Kads = constant of the adsorption−desorption
reaction (or distribution coefficient), g is an adsorbate
interaction parameter, and n is a correction factor, but θ is
calculated by eq 7.16

M
M

1 1

B
=

(7)

The standard free energy of adsorption ( Gads° ) is given in kJ·
mol−1 by eq 8:29,30

G RT ln(K )ads° = ° (8)

where R is the universal gas constant (8.314 J·mol−1·K−1), T is
the temperature (K), and K° is the standard equilibrium
constant (dimensionless).

2.2.5. Surface Analysis. SEM images were obtained using a
TESCAN electronic microscope, model Mira3. The images
were generated by the detection of secondary electrons with a
voltage acceleration of 15 kV and a distance of 15 mm.

3. RESULTS AND DISCUSSION
3.1. Oil Composition. Table 2 exhibits the constituents

found for PDEO. The presence of 53 constituents was observed,

Table 1. Materials, Description, and Supplier Used in the
Preparation of the PDEO

Material Description Supplier

Hydrochloric acid 37%, PA, molecular weight 36.46 g/
mol

Êxodo
cientif́ica

Acetic acid Pure, molecular weight 60.05 g/mol Êxodo
cientif́ica

Sodium sulfate Molecular weight 322.20 g/mol Êxodo
cientif́ica

Galvanized steel
sheet

Galvanic-coated steel sheets Aço Cearense

Figure 1. Extraction of PDEO.
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where the main components are sesquiterpene hydrocarbons
and phenylpropanoids with levels of 52.87% and 38.41%,
respectively. Korkina reports that the phenylpropanoid class
exhibits antioxidant, anti-inflammatory, antiviral, healing, and
antibiotic properties;31 and sesquiterpenes found in genus
Carpesium plants are important for the aroma of natural
products and have a series of pharmacological properties, such
as antitumor, anti-inflammatory, antibacterial, antiparasitic,
insecticidal, and antiviral activities.32

The chemical composition of PDEO was characterized by the
presence of the following: (1) phenylpropanoids: methyleuge-
nol (20.68%) and eugenol (15.42%) and (2) sesquiterpene
hydrocarbons: germacrene D (10.41%), β-elemene (10.20%),
bicyclogermacrene (8.34%), and (E)-caryophyllene (6.35%).
These components are frequently identified in essential oils
from Piper divaricatum, collected in the western region of the
state of Para,́ Brazil.33 Oliveira et al. identified the presence of
methyleugenol and eugenol in high levels in the essential oil of
the dried leaves of the species Piper divaricatum, collected in the
city of Beleḿ in the state of Para.́34 Eugenol (or 4-allyl-2-
methoxyphenol) is widely used in pharmacological, gastronom-
ic, and medicinal areas. This compound has antioxidant,
antimicrobial, fungicidal, and anti-inflammatory properties.35

Methyleugenol (or 4-allyl-1,2-dimethoxybenzene) is used in
industries of hygiene products, adhesive products, cosmetics,
perfumes, shampoos, and soaps.36

Montanari et al. observed that for essential oils from the
species Aloysia virgata, Lippia brasiliensis, Lantana montevidensis,

and Lantana trifolia, Germacrene Dwas the main component. In
addition, the essential oils exhibited fungicidal and bactericidal
activity.37 β-elemene has antitumor and anti-inflammatory
activities and is used medicinally via oral or injectable liposome
emulsion for the treatment of some types of cancer in China.
However, few studies prove the effectiveness of this compound.
This constituent is often extracted from the Curcuma wenyujin
plant and used in traditional Chinese medicine.38,39 Haldhar et
al. studied three phytochemicals, such as eugenol, methyleuge-
nol, and cinnamyl acetate, that are excellent inhibitors for the
corrosion of carbon steel due to their molecular structures and
their occurrence in a variety of plants.40 Thus, the main
constituents found in PDEO indicate that this oil has a high
potential to inhibit metallic corrosion.
3.2. Electrochemical Studies. Polarization curves for steel

with different concentrations of PDEO, 0.5−4 g/L, are provided
graphically in Figure 2. Additionally, polarization parameters
such as corrosion potential (Ecorr), current density (icorr),
cathodic Tafel slope (βc), and anodic Tafel slope (βa) are listed
in Table 3. Our findings demonstrate that for different PDEO
concentrations, lower Ecorr and icorr values were obtained. The
polarization curves display the predominance of inhibition for
cathodic reactions; the shape of the curves in the cathodic region
exhibited smaller changes compared to that same region of the
curve without PDEO.27,52 On the other hand, βa values
exhibited a significant modification, which indicates the effect
of PDEO on the formation of iron ions.27,52 However, the
cathode displacement with 0.5−4 g/L of PDEO is less than

Table 2. Identification of Chemical Constituents Present in PDEOa

RIL RIC Constituent (%)

932 930 α-Pinene 0.44
974 933 β-Pinene 0.46
988 977 Myrcene 0.04
1024 990 Limonene 0.07
1044 1028 (E)-β-Ocimene 0.53
1135 1046 trans-Pinocarveol 0.04
1137 1138 trans-Sabinol 0.05
1194 1144 Myrtenol 0.07
1285 1196 Safrole 0.88
1335 1289 δ-elemene 3.33
1345 1330 α-Cubebene 0.26
1356 1366 Eugenol 15.42
1374 1382 α-Copaene 1.00
1389 1390 β-Elemene 10.20
1403 1419 Methyleugenol 20.68
1417 1436 (E)-Caryophyllene 6.35
1430 1444 β-Copaene 1.85
1439 1452 Aromadendrene 1.19
1447* 1456 Isogermacrene D 0.39
1452 1465 α-Humulene 1.74
1478 1473 γ-Muurolene 0.52
1484 1485 Germacrene D 10.41
1489 1501 β-Selinene 1.81
1500* 1513 Biciclogermacrene 8.34
1511 1516 δ-Amorphene 0.27
1513 1524 γ-Cadinene 1.67
1520 1528 α-epi-Selinene 0.10
1522 1534 δ-Cadinene 3.01
1524 1537 Chavibetol Acetate 1.43
1533 1541 trans-Cadina-1,4-diene 0.26
1537 1545 α-Cadinene 0.13

RIL RIC Constituent (%)

1544 1550 α-Calacorene 0.04
1548 1556 Elemol 0.02
1561 1571 (E)-Nerolidol 0.68
1577 1589 Spatulenol 1.88
1582 1594 Caryophyllene Oxide 1.34
1592 1600 Viridifloren 0.07
1600 1609 Rosifoliol 0.07
1608 1617 Humulene Epoxide II 0.12
1618 1620 1,10-diepi-Cubenol 0.06
1629 1629 Eremoligenol 0.02
1627 1634 epi-Cubenol 0.05
1645 1638 Cubenol 0.04
1639 1644 allo-Aromadendrene Epoxide 0.12
1640 1648 α-epi-Murrolol 0.24
1644 1652 α-Murrolol 0.11
1652 1662 α-Cadinol 0.51
1668 1665 (E)-9-epi-14- Caryophyllene Hidroxide 0.12
1685 1676 Germacra-4, (15), 5, 10, (14)-trien-1-α−ol 0.17
1685 1689 α-Bisabolol 0.03
1687 1692 Eudesma-4, 15-dien-1-β-ol 0.04
1745 1723 γ-Costol 0.03
1845* 1845 2-Pentadecanone 0.07
Monoterpene Hydrocarbon 1.54
Oxygenated Monoterpenes 0.16
Sesquiterpene Hydrocarbons 52.87
Sesquiterpene Oxygenated 5.79
Phenylpropanoids 38.41
Total 98.77%

aRIL: literature retention index;41 RIC: calculated retention index; *
retention index identified by the FFNSC-2 database.
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0.085 V, which prevents classifying PDEO as a cathodic or
anodic inhibitor.52 Thus, our results show that PDEO is amixed-
type corrosion inhibitor (cathodic/anodic).27,52 The addition of
PDEO promoted an inhibition of steel corrosion in 1 M HCl.
3.3. Gravimetric Measurement. The investigation of

PDEO as a promoter of corrosion inhibition of steel in 1 M
HCl was carried out by mass loss tests for 1 and 7 days, with oil
concentrations ranging from 0 to 4 g/L. Table 4 and Figures 3, 4

summarize the results for IE, CR, and θ on steel in an acid
medium with PDEO. All errors or uncertainties in the
calculation of IE and CR are exhibited in Table 4 although
some error bars do not appear in Figures 3,4 because they are
very small. In general, it was observed that increasing the
concentration of the EO led to an increase in the IE value for the
two immersion periods evaluated.
Figure 3 for the IE values reveals that the PDEO performed

satisfactorily as a green corrosion inhibitor for steel and the
increase in IE was proportional to the increase in PDEO

concentration, where it is observed that the highest concen-
tration provides greater corrosion inhibitory activity. The
highest IE value equal to 94.93% was obtained for an oil
concentration of 4 g/L for 1 day, i.e., oil concentrations greater
than 1 g/L exhibit marginal variations in the IE values for 1 day.
The IE found for 2 g/L PDEO was remarkably equal to 98.33%
for 7 days of immersion. This result confirms that the PDEO
with a concentration of 2 g/L acted successfully in inhibiting
steel corrosion in 1 M HCl. This concentration (2 g/L) is
considered satisfactory because it corresponds to the smallest
amount of oil used that provides the highest IE.
Rizi et al. extracted and characterized an essential oil (EO)

obtained from theCuminum cyminum (CC) plant native to India
to act as a corrosion inhibitor on mild steel in a 0.5 M HCl
solution at different concentrations. They found that the
Cuminum cyminum L. (CCL) extract effectively reduces the
corrosion of mild steel in hydrochloric acid with an inhibition
efficiency ranging from 79.69% to 98.76%. The optimal
inhibition concentration was 2 g/L of EO, similar to ours, and
surface analysis confirmed the formation of a protective layer.
Furthermore, our results suggest that the inhibitor binds to the
metal surface through a charge-transfer process, creating a
protective film.42

Figure 2. Polarization curves for steel in 1 M HCl after 24 h of
immersion with different concentrations of PDEO.

Table 3. Ecorr, icorr,−βc, and βa for PDEO in 1MHClMedium,
after 24 h of Immersion

Concentration (g/
L) Ecorr (V) icorr (A/cm2)

−βc
(Vdec−1)

βa
(Vdec−1)

0 −0.455 2.841 × 10−5 0.017 0.004
0.5 −0.451 6.894 × 10−6 0.019 0.019
1 −0.442 1.758 × 10−5 0.022 0.02
2 −0.453 9.198 × 10−6 0.037 0.04
4 −0.465 1.129 × 10−5 0.007 0.01

Table 4. IE, CR, and θ for PDEO in 1 M HCl Medium

Concentration
(g/L)

Inhibition efficiency
(%)

Corrosion rate (mm·
y−1) θ

0 (1 day) - 215.71 ± 57.66 -
0.5 (1 day) 83.09 ± 8.03 36.46 ± 17.31 0.8309
1 (1 day) 91.83 ± 1.40 17.60 ± 4.35 0.9183
2 (1 day) 92.42 ± 1.27 16.35 ± 2.75 0.9242
4 (1 day) 94.93 ± 0.34 10.92 ± 0.73 0.9493
0 (7 days) - 259.63 ± 20.13 -
0.5 (7 days) 82.02 ± 3.38 46.69 ± 8.79 0.8202
1 (7 days) 93.09 ± 1.36 17.93 ± 3.54 0.9309
2 (7 days) 98.33 ± 0.11 4.31 ± 0.30 0.9833
4 (7 days) 96.27 ± 0.34 9.67 ± 0.88 0.9627

Figure 3. IE of PDEO for 1 and 7 days.

Figure 4. CR of PDEO for 1 and 7 days.
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Figure 4 shows that the CR has an inverse behavior to that
determined for the IE for 1 and 7 days. The effect of oil addition
was inversely proportional to the CR, and the progressive
increase in the oil concentration decreased the CR value. For
steel immersed in 100mL of 1MHCl without oil for 1 day, a CR
of 215.71 mm·y−1 was found, while with 1 g/L of the oil, a
decrease in that of 17.60mm·y−1 was obtained. The CR from the
oil concentration of 1 g/L was observed stability for the CR for 1
day of immersion. This behavior is in good agreement with the
value calculated for the IE for this concentration, where a plateau
in the IE was observed of inhibition from the concentration of 1
g/L. For 7 days of immersion, the highest value of CR was 4.31
mm·y−1 for an oil concentration of 2 g/L. This concentration of
2 g/L for PDEO is a satisfactory concentration to promote the
inhibition of steel corrosion in a 1 M HCl medium.
The anticorrosive activity of PDEO was attributed to the

adsorption of its main components onto the steel surface, which
is favored by the low pH of the corrosive environment. The oil
components adsorbed on the steel surface prevent the
occurrence of the characteristic reactions observed in the
corrosive process in an acid medium16,43 (see the “Surface
Investigation” section). Our results are corroborated by Loto,
where, by potentiometric method, a steel corrosion inhibition
efficiency value of 97.69% (0.5 M HCl) was obtained for a
mixture formed by rosemary essential oil and Cinnamon cassia
essential oil.44 Hossain et al. used cinnamaldehyde extracted
from cinnamon essential oil as a green inhibitor for steel
corrosion in a 10% HCl medium. They observed via mass loss
experiments an inhibition efficiency of 95.36% for a concen-
tration of 0.2 g/L of cinnamaldehyde. The inhibitory activity of
cinnamaldehyde was attributed to its adsorption on the steel
surface, minimizing the action of the corrosive environment.16

Growcock and Frenier, using trans-cinnamaldehyde, found by
mass loss tests an inhibition efficiency for steel corrosion in 15%
HCl of 91.9%.45 Our findings are in good agreement with several
studies that investigated natural, green, or eco-friendly inhibitors
for metal (steel, copper, etc.) corrosion in acidic medium such as
caffeine,46 cinnamon essential oil,47 Syzygium aromaticum
aqueous extract,2 Dysphania ambrosioides essential oil,19

Origanum vulgare essential oil,25 Thunbergia fragrans extract,48

and Eucalyptus globulus essential oil.49

3.4. Surface Investigation. Figure 5 exhibits the steel
surface immersed in 1 M HCl (a) without and (b) with PDEO
through the acquisition of SEM images. Figure 5a shows that the
surface of steel without oil is rough, which occurs in the presence

of a corrosive acid medium. The surface with 2 g/L of oil for 7
days exhibited a less rough morphology. This result is attributed
to the corrosion inhibitory effect of PDEO (Figure 5b). Energy-
dispersive spectroscopy (EDS) showed that the steel surface is
composedmainly of iron, carbon, and oxygen. EDS also revealed
that carbon is in a higher amount on the steel surface with the oil,
which suggests that the oil components are adsorbed on the steel
surface and also causes a decrease in the iron content. In
addition, EDS showed that the iron content of steel in an acid
medium is lower in the presence of PDEO. This behavior can be
explained by the adsorption of PDEO components on the steel
surface, and similar results were reported by Sanaei et al.15

3.5. Adsorption Isotherm. The isothermal adsorption
models of Langmuir, Frumkin, Temkin, and Freundlich were
evaluated (black and red lines) and compared with experimental
results (black closed squares and red closed circles) to explain
the mode of adsorption of the PDEO components on the steel
surface in a 1 M HCl medium for 1 and 7 days, respectively.
Figure 6a−d displays the graphs for the four investigatedmodels.
Figure 6a shows that the graph of Cinh/θ versus Cinh is a straight
line, which is satisfactorily attributed to the Langmuir adsorption
isotherm model, with values of R2 and a slope very close to 1
(Table 4).
These results indicate that there is a monolayer of oil

components adsorbed on the steel surface16. Sanni, Iwarere, and
Daramola reported that the Langmuir adsorption isotherm
model was found to describe the adsorption behavior of the
parsley essential oil to inhibit the corrosion of aluminum alloys
in simulated seawater with 3.5% NaCl solutions.50 For
Dysphania ambrosioides essential oil, thermodynamic studies
found that the adsorption of oil components on the steel surface
in 1 M HCl obeys the Langmuir model.19 Cristofari et al. also
found that the adsorption of Helichrysum italicum subsp. italicum
essential oil components on steel in a 1 M HCl medium also
obeys the Langmuir adsorption model.51 On the other hand, for
Peganum harmala seed extract, as a natural inhibitor for steel, the
Freundlich adsorption isotherm model was determined.52 Date
palm leaf extract also follows the Freundlich adsorption
isothermmodel on the aluminum surface in an acidic medium.53

Graphs for the Temkin, Frumkin, and Freundlich isotherms
displayed R2 and slope values significantly lower than 1, which
means that the PDEO does not obey these adsorption isotherm
models (Figure 6b−d).
PDEO has several components (see the “Oil Composition”

section), and some components are in higher content. Thus, our
mechanistic proposal for corrosion inhibition by PDEO will be
demonstrated for two major components (eugenol and
methyleugenol). However, this mechanism is also applicable
to the minority components, which also have lone pairs of
electrons, heteroatoms, and aromatic rings. In the literature,
there are several adsorption studies where Kads is dimensional.
However, for the standard free energy calculation (eq 8), the K°
is dimensionless. Thus, considering the exchange adsorption,
the value of Kads (L·g−1) needs to be corrected by eq 9.54

K MK 55.5ads° = (9)

where M = molecular weight of eugenol (164.2 g·mol−1) or
methyleugenol (178.2 g·mol−1).
Table 5 displays, as an example, a negative value for Gads° for

the adsorption of eugenol in 1 and 7 days, which means that the
adsorption process is a favorable process. These standard free
energy calculations can be performed for the other components
of the PDEO. Thus, Gads° values less than −40 kJ·mol−1

Figure 5. Surface morphologies (on the left) and EDS (on the right) for
steel: (a) without inhibitor and (b) with inhibitor for 7 days.
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correspond to chemisorption, while Gads° values higher than
−20 kJ·mol−1 are attributed to physisorption.27 The values for

Gads° are close to −30 kJ·mol−1, which is an indicative of both
physisorption and chemisorption between the oil components
and the steel surface. High values for Kads indicate efficient
adsorption, which promotes high inhibition efficiency (IE) as
observed for 2 g/L in 7 days.43 Lashgari et al. reported a high
dispersion for Kads for Thymus vulgaris leaf extract as an effective
mild-steel corrosion retardant for 200, 400, 600, and 800 ppm of
extract at different immersion times.28 A similar trend was found
for Tamarindus indica aqueous extract as a new green inhibitor
for mild steel in an acidic medium.43

The surface of steel in an acidic medium (HCl) has a positive
charge (H+) which interacts electrostatically with Cl− anions

(red balls in Figure 7b). The molecules of the main components
of PDEO can be protonated through oxygen (O) atoms, which
are in red in Figure 7a.55 These protonated molecules are
electrostatically attracted by chloride anions (Cl−), and the
adsorption process occurs by physisorption (Figure 7b). For
chemisorption, lone electron pairs and heteroatoms of PDEO
components can interact chemically by donating electrons to
iron ions (Fe2+ and Fe3+, see black and yellow balls in Figure
7b).28 Similar mechanistic proposals have been reported for the
Thymus vulgaris leaf extract as a green corrosion inhibitor.28 This
proposed mechanism for inhibiting steel corrosion by PDEO is
supported by our experimental IE and CR results, where the
main components of PDEO (determined by GC-MS) were
eugenol (15.42%) and methyleugenol (20.68%; Table 2). Thus,
our results reveal that PDEO, a natural product, extracted in the
Brazilian Amazon, inhibited the corrosion of steel in 1 M HCl
with an inhibition efficiency of 98% for a concentration of 2 g/L
of PDEO.

4. CONCLUSION
The PDEOwas studied as a green corrosion inhibitor for steel in
an acid medium. From the obtained results, we have the
following conclusions: GC-MS analysis found eugenol and
methyleugenol as the main components of PDEO. Our
electrochemical studies demonstrate that for different PDEO
concentrations, lower Ecorr and icorr values were obtained. The
experimental and theoretical data show that PDEO acts as an

Figure 6. Isothermmodels for the adsorption of PDEO on the steel surface in 1MHCl for 1 and 7 days: (a) Langmuir, (b) Temkin, (c) Frumkin, and
(d) Freundlich.

Table 5. Langmuir Adsorption Isotherm Parameters
(Eugenol)

Concentration
(g/L)

Time
(days) Kads (L·g−1) Keugenol°

Geugenol° (kJ·
mol−1)

0.5 1 12.7 ± 9.1 115610 −28.9
7 9.3 ± 1.9 85374 −28.1

1 1 11.7 ± 3.0 106973 −28.7
7 13.9 ± 3.3 126821 −29.1

2 1 6.2 ± 1.2 56756 −27.1
7 29.7 ± 2.1 270442 −31.0

4 1 4.7 ± 0.3 42821 −26.4
7 6.4 ± 0.6 59199 −27.2
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effective inhibitor of steel corrosion in 1 M HCl. The maximum
value for steel corrosion IE was equal to 98.33% for an oil
concentration of 2 g/L for 7 days of immersion. Corrosion rate
(CR) values decreased as the concentration of PDEO increased.
The corrosion process was inhibited by the adsorption of
organic matter on the steel surface. The steel surface with PDEO
exhibited less damage than the steel surface without PDEO. The
oil adsorption process of PDEO on the steel surface from 1 M
HCl obeys the Langmuir adsorption isotherm. Negative values
found for Gads° indicate the adsorption as a favorable process,
and the adsorption mechanism is typical of physisorption and
chemisorption. Based on the characterization of PDEO, the
major components (eugenol and methyleugenol) act together
by adsorption (physisorption and chemisorption) to ensure
inhibition. Then, the inhibition is regarded as an intermolecular
synergistic effect of the various components of natural oil or
essential oil. These findings reveal that the PDEO, extracted in
the Brazilian Amazon, has a promising character for anti-
corrosive steel applications and for metal coating in industries,
which is in good agreement with the literature.
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Nova 2011, 34 (9), 1550−1555.
(38) Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.;
Wang, S.; Chen, X.; Sui, X.; Xie, T. Drug Delivery Systems for Elemene,
Its Main Active Ingredient β-Elemene, and Its Derivatives in Cancer
Therapy. Int. J. Nanomed. 2018, 13, 6279−6296.
(39) Xie, Q.; Li, F.; Fang, L.; Liu, W.; Gu, C. The Antitumor Efficacy
of β -Elemene by Changing Tumor Inflammatory Environment and
Tumor Microenvironment. BioMed. Res. Int. 2020, 2020, 1−13.
(40) Haldhar, R.; Kim, S.-C.; Berisha, A.; Mehmeti, V.; Guo, L.
Corrosion Inhibition Abilities of Phytochemicals: A Combined
Computational Studies. J. Adhes. Sci. Technol. 2023, 37 (5), 842−857.
(41) Adams, R. P. Identification of Essential Oil Components by Gas

Chromatography/Mass Spectrometry; 4th Edition, Dattani Book Agency:
2007, p 804. https://dattanibookagency.in/products/identification-of-
essential-oil-components-by-gas-chromatography-mass-spectrometry-
4th-edition.
(42) Rizi, A.; Sedik, A.; Acidi, A.; Rachedi, K. O.; Ferkous, H.;
Berredjem, M.; Delimi, A.; Abdennouri, A.; Alam, M.; Ernst, B.;
Benguerba, Y. Sustainable and Green Corrosion Inhibition of Mild
Steel: Insights from Electrochemical and Computational Approaches.
ACS Omega 2023, 8 (49), 47224−47238.
(43) Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh,
M. Electronic/Atomic Level Fundamental Theoretical Evaluations
Combined with Electrochemical/Surface Examinations of Tamarindus
Indiaca Aqueous Extract as a New Green Inhibitor for Mild Steel in

Acidic Solution (HCl 1M). J. Taiwan Inst. Chem. Eng. 2019, 102, 349−
377.
(44) Loto, R. T. Evaluation of the Corrosion Inhibition Effect of the
Combined Admixture of Rosemary and Cinnamon Cassia Oil on Mild
Steel inWeak Acid Electrolyte. Sustain Chem. Pharm. 2020, 17, 100298.
(45) Growcock, F. B.; Frenier, W. W. Kinetics of Steel Corrosion in
Hydrochloric Acid Inhibited with trans-Cinnamaldehyde. J. Electro-
chem. Soc. 1988, 135 (4), 817.
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